Prediction of Antidiabetic Compounds in Curcuma longa – In vitro and In silico Investigations http://www.doi.org/10.26538/tjnpr/v7i10.33

Main Article Content

Temitope I. Adelusi
Rofiat O. Adeyemi
Mojeed A. Ashiru
Ukachi C. Divine
Ibrahim D. Boyenle
Abdul-qudus K. Oyedele
Itunu M. Adewoye

Abstract

Mitigation of postprandial blood glucose and inhibition of carbohydrate-digesting enzymes is an indispensable measure for the treatment or management of type II diabetes mellitus. Medicinal plants due to their diverse bioactive compounds have been reported umpteen times in the management and treatment of diabetes. Hence, the research exploits both in vitro and in silico methodologies to investigate the antidiabetic capacity of Curcuma longa aqueous extract. Its phytochemical components were deduced and quantified in conjunction with its antioxidant potential and inhibitory potential against alpha-amylase and alpha-glucosidase (enzymes indispensable to carbohydrate metabolism) through in vitro assay. GC-MS revealed bioactive compounds from Aqueous Curcuma longa extract were subjected to ADMET profile, Lipinski rule, and Molecular docking studies. Curcuma longa aqueous extract had enormous phenol, flavonoid, and tannin. The extract scavenged DPPH and NO in addition to its inhibitory capacity against alpha-amylase and alpha-glucosidase with IC50 values of 93.34ug/ml and 45.23ug/ml respectively. Consensus molecular docking studies revealed stigmasterol and 2-[4-(1-Ethyl-3-methyl-1H-pyrazol- 4-yl)-4-oxobut-2-enamido]benzoic acid as top-rank hits against alpha-glucosidase. They also proclaimed promising ADMET and bioactive properties in comparison to the standard, acarbose. Consequently, they could be prospective compounds that contribute highly to alpha-glucosidase inhibition as observed in the enzyme assay result. The inhibitory potential of Curcuma longa might be due to the strong binding affinity of its bioactive compounds to alpha-glucosidase. Therefore, this research establishes Curcuma longa as a functional food for the management of type-2 diabetes while the bioactive compounds especially stigmasterol and 2-[4-(1-Ethyl-3-methyl-1H-pyrazol- 4-yl)-4-oxobut-2-enamido]benzoic acid could be a nutraceutical for the management of type 2 diabetes. 

Article Details

How to Cite
Adelusi, T. I., Adeyemi, R. O., Ashiru, M. A., Divine, U. C., Boyenle, I. D., Oyedele, A.- qudus K., & Adewoye, I. M. (2023). Prediction of Antidiabetic Compounds in Curcuma longa – In vitro and In silico Investigations: http://www.doi.org/10.26538/tjnpr/v7i10.33. Tropical Journal of Natural Product Research (TJNPR), 7(10), 4937-4944. https://tjnpr.org/index.php/home/article/view/2848
Section
Articles

References

Sabu MC andKuttan R. Antidiabetic and antioxidant activity of Terminaliabellerica. Roxb, Indian J. of Exp. Biol. 2009; 47:270–275.

Rasiah IA andRehm BH. One-step production of immobilized alpha-amylase in recombinant Escherichia coli. Appl. Environ. Miocrobiol. 2009; 75:2012–2016.

Chehade JM andMooradian AD. A rational approach to drug therapy of type 2 diabetes mellitus. Drugs. 2000; 60:95–113.

Jiang LL, Gong X, Ji MY, Wang CC, Wang JH, and Li MH. Bioactive Compounds from Plant-Based Functional Foods: A Promising Choice for the Prevention and Management of 4.Hyperuricemia. Foods. 2020; 9(8):973. doi: 10.3390/foods9080973.

Adelusi TI, Oyedele AK, Monday OE, Boyenle ID, Idris MO, Ogunlana AT, Ayoola AM, Fatoki JO, Kolawole OE, David KB, and Olayemi AA. Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)-Molecular dynamics, molecular mechanics, and density functional theory investigations. J MolStruct. 2022; 1250:131879. doi: 10.1016/j.molstruc.2021.131879.

AdelusiTI, Abdul-Hammed M, Idris, M.O, Oyedele QK, Ibrahim DB, Ukachi CD, Ibrahim OA, Ajayi AF and Oladipo EK. Exploring the inhibitory potentials of Momordicacharantia bioactive compounds against Keap1-Kelch protein using computational approaches. In SilicoPharmacol. 2021;9, 39. https://doi.org/10.1007/s40203-021-00100-2.

Oboh G, Isaac AT, Akinyemi AJ, Ajani RA. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats' pancreas by phenolic extracts of avocado pear leaves and fruit. Int J Biomed Sci. 2014 Sep; 10(3):208-16.

Oboh G, Adelusi TI and AkinyemiAJ.Inhibitory effect of phenolic extract from leaf and fruit of avocado pear (Persea americana) on Fe2+induced lipid peroxidation in rats’ pancreas in vitro. FutaJ. of Res in Sci, 2013 (2): 276-286.

Adelusi TI, Oboh G and Akinyemi AJ, In-vitro Effects of Persea Americana Aqueous Extracts Against Oxidants and Fe2+-Induced Oxidative Stress in Rats’ Pancreas, Trop J Nat Prod Res, June 2018; 2(6):297-302.

AdelusiTI, Oboh G, Akinyemi AJ, Ajani RA andOlanrewajuBO.Avocado pear fruits and leaves aqueous extracts inhibit α-amylase, α-glucosidase, and snp-induced lipid peroxidation – an insight intomechanisms involved in management of type 2 diabetes, Int J. of Appand Nat Sci. 2016; 3(5): 21-34.

Kumar S, Singh NN, Singh A, Singh N, Sinha RK. Use of Curcuma longa L. extracts to stain various tissue samples for histological studies. Ayu. 2014 Oct-Dec; 35(4):447-51. doi: 10.4103/0974-8520.159027.

Sanjay J, Satyaendra S, Satish N and Sumbhate S. Recent trends in Curcuma longa Linn Pharm Rev. 2007.

Aronson JK. Meyler's Side Effect of Medicinal Herb. Elsevier Science, 2009; 233-234.

Ememobong GA, Chinweizu EU. Antibacterial and toxicity studies of the ethanol extract of Musa paradisiaca leaf. Cog Bio.2016. 2(1). doi:10.1080/23312025.2016.1219248.

Manzocco L, Anese M, Nicoli MC, Antioxidant properties of tea extracts as affected by processingLebens-mittel-Wissenschaft Und-Technologie, 31 (7–8) (1998), pp. 694-698.

Garratt DC. The quantitative analysis of Drugs. Vol. 3. Chapman and Hall Ltd, Japan; 1964. pp. 456–458.

Bernfeld P. 1955. Amylases, α and β. Methods in Enzymology 1: 149 – 158.

Dahlqvist A. Method for assay of intestinal disaccharidases. Anal Biochem.1964; 7:18-25. doi: 10.1016/0003-2697(64)90115-0.

Hadi MY, Mohammed G J, and Hameed IH. Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography-mass spectrometry. J. of Pharm and Phy.2016;8(2), 8–24. https://doi.org/10.5897/JPP2015.0364

Binkowski TA, Naghibzadeh S, and Liang J. CASTp: Computed Atlas of Surface Topography of proteins. Nucl Acids Res.2013;31(13), 3352–3355. https://doi.org/10.1093/nar/gkg512

Hsu KC, Chen, YF, Lin SR, and Yang J. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bio,2011; 12 Suppl 1(Suppl 1), S33. https://doi.org/10.1186/1471-2105-12-S1-S33.

Dallakyan S, and Olson AJ. Small-molecule library screening by docking with PyRx. Met in Mol Bio 2015;1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19

Trott O, and Olson, AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. of Comp Chem.2010;31(2), 455–461. https://doi.org/10.1002/jcc.21334.

Adelusi TI, Abdul-hammed M, Ojo EM, Oyedele QK, Boyenle ID, Ibrahim O, Olaoba OT, Folorunsho AAand Kolawole OE. Molecular Docking Assessment of Clinically Approved Antiviral Drugs against M pro, Spike Glycoprotein and Angiotensin Converting Enzyme-2 Revealed Probable Anti- SARS-CoV-2 Potential. Trop J. of Nat Pro Res. 2021;778–791.

Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, and Shoemaker BA. PubChem substance and compound databases. Nuc Acids Res.2016;44(D1), D1202–D1213.

Farnsworth. Pharmaceutical Sciences. J. of Pharm Sci.1996.https://doi.org/10.1002/jps.2600550302

Khalivulla S, Mohammed A, Mallikarjuna K. Novel Phytochemical Constituents and their Potential to Manage Diabetes. Curr Pharm Des. 2021;27(6):775-788. Doi:10.2174/1381612826666201222154159. PMID:33355047.

Jha P, Kumari S, Jobby R, Desai N and Ali A. Dietary Phytonutrients in the prevention of Diabetes-related Complications. Curr Diabetes Rev. 2021;16(7):657-673. Doi:10.2174/1573399815666190906151319. PMID:3149072.

Kaul K, Tarr JM, Ahmad Sl, Kohner EM and CHibber R. Introducion to diabetes mellitus. Adv Exp Med Biol. 2012;771:1-11. Doi:10.1007/978-1-4614-5441-0_1. PMID:23393665.

Aye MM, Aung HT, Sein MM and Armijos C. A Review on the Phytochemistry, Medicinal Properties and Pharmacological Activities of Selected Myanmar Medicinal Plants. Mol. 2019;24(2):293. Doi: 10.3390/molecues24020293.

Yaribeygi H, Sathyapalan T, Atkin SLand Sahebkar A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxid Med Cell Longev. 2020; 2020:8609213. doi: 10.1155/2020/8609213. PMID: 32215179; PMCID: PMC7085395.

SirivibulKK, Nouanthavong S, Sameenoi Y. Paper-based DPPH Assay for Antioxidant Activity Analysis. Anal Sci. 2018; 34(7):795-800. Doi:10.2116/analsci.18P014. PMID: 29998961.

Akinmoladun AC, Obuotor EM. and Farombi EO. Evaluation of antioxidant and free radical scavenging capacities of some Nigerian indigenous medicinal plants. J. of Med Food.2010;13(2), 444–451.

Hagerman AE, Jones KM and Riedl SGA. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem.1998;46:1887-1892

Yermilov V, Rubio J, Becchi M, Friesen MD, Pignatelli B and Ohshima H. Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis. 1995; 16: 2045- 2050.

Ruthiran, Papitha& Ravi, Lokesh & Selvaraj, C. Immanuel. Phytochemical studies and GC-MS analysis of spermadictyonsuaveolensroxb. Int J. of Pharm and Pharm Sci. 2017;9. 143. 10.22159/ijpps.2017v9i3.16059.

Kwan TK, Trafford DJ, Makin HL, Mallet AI, Gower DB. GC-MS studies of 16-androstenes and other C19 steroids in human semen. J Steroid Biochem Mol Biol. 1992;43(6):549-56. Doi: 10.1016/0960-0760(92)90243-c. PMID: 1419890

Morris Gm, lim-WIlby M. Molecular docking. Methods Mol Biol. 2008; 443:365-82. Doi: 10.1007/978-1-59745-177-2_19. PMID: 18446297.

Khanjiwala Z, Khale A, and Prabhu A. Docking are structurally similar analogs: Dealing with the false-positive. J. of Mol Grap and Mod.2019;93, 107451.

Dos Santos Maia M, Soares Rodrigues GC, Silva Cavalcanti AB, Scotti L, and Scotti MT. Consensus analyses in molecular docking studies applied to medicinal chemistry. Mini Rev in Med Chem.2020;20(14), 1322–1340.

Feher M. Consensus scoring for protein–ligand interactions. Drug Dis Today, 2006;11(9–10), 421–428.

Boyenle I. D, Divine UC, Adeyemi R, Ayinde KS, Olaoba OT, Apu C, Du L, Lu Q, Yin X and Adelusi TI. Direct Keap1-kelch inhibitors as potential drug candidates for oxidative stress-orchestrated diseases: A review on In silico perspective. Pharm Res.2021;167, 105577. https://doi.org/10.1016/j.phrs.2021.105577.

Wang Jf, Zhang M, Li YY, Xia S, Wei Y, Yang L, Wang D, Ye J, Li H, Yuan J and Pan R. A combination of omega-3 and plant sterols regulate glucose and lipid metabolism in individuals with impaired glucose regulation: a randomized and controlled clinical trial. Lipids Health Dis2019;18, 106. https://doiorg/10.1186/s12944-019-1048-x.

Ferreira LLG, and Andricopulo AD. ADMET modeling approaches in drug discovery. Drug Dis Today, 2019;24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015

Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Dis Today. Tech.2004;1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

Manikandan P, Nagini S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr Drug Targets. 2018;19(1):38-54. Doi: 10.2174/1389450118666170125144557.

Ekins S, Balakin KV, Savchuk N, Ivanenkov Y. Insights for human ether-a-go-go-related gene potassium channel inhibition using recursive partitioning and Kohonen and Sammon mapping techniques. J Med Chem. 2006 49(17):5059-71. doi: 10.1021/jm060076r. PMID: 16913696.

Modi S, Li J, Malcomber S, Moore C, Scott A, White A, Carmichael P. Integrated in silico approaches for the prediction of Ames test mutagenicity. J Comput Aided Mol Des. 2012;26(9):1017-33. Doi:10.1007/s10822-012-9595-5.