Phytochemistry and Antitrypanosomal Effects of Acacia nilotica, Tamarindus indica and Terminalia avicennioides Using Drug Incubation Infectivity Test http://www.doi.org/10.26538/tjnpr/v7i9.33

Main Article Content

Abdullah M. Tauheed
Mohammed Mamman
Abubakar Ahmed
Bashir Ibrahim
Hadiza Aliyu-Amoo
Sakeena F. Yahaya
Emmanuel O. Balogun

Abstract

Trypanosomiasis remains a major constraint to the development of the livestock sector in subSaharan Africa with the negative economic impact extending into South America and Asia. The increasing resistance to the available trypanocidal drugs necessitates the need for the discovery of newer and more efficient drug. Therefore, the aim is to screen three important Nigerian ethnomedicinal plants for antitrypanosomal potential. Fifty microliter of 20, 10 and 0.1 µg/µL each of the crude methanol extract of Acacia nilotica, Terminalia avicennioides and Tamarindus indica, and diminazene aceturate was mixed with 50 µL of Trypanosome congolense-laden
blood (TC-LB) (8.6×107 cells per mL of blood) and incubated at 25°C for 5 h. Similarly, wells with 2% tween 80 and TC-LB only served as negative and untreated controls, respectively. The experiment was carried out in triplicate. The contents of each well were inoculated into mice at score 0 and at the end of the experiment for concentrations that did not produce score 0. Phytochemical constituents of each extract were detected by thin-layer chromatography. T. avicennioides and A. nilotica reached score 0 within 3 and 5 h, respectively, and did not produce infection in the inoculated mice. However, T. indica produced significant (P < 0.05) reduction in
parasite motility at the highest concentration compared to negative control. Alkaloids, phenols, steroids and triterpenes were detected in the three plants. Additionally, T. avicennioides also contained anthraquinones. Thus, the plants, particularly T. avicennioides and A. nilotica offer prospects for the discovery of new antitrypanosomal drugs. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Tauheed, A. M., Mamman, M., Ahmed, A., Ibrahim, B., Aliyu-Amoo, H., Yahaya, S. F., & Balogun, E. O. (2023). Phytochemistry and Antitrypanosomal Effects of Acacia nilotica, Tamarindus indica and Terminalia avicennioides Using Drug Incubation Infectivity Test: http://www.doi.org/10.26538/tjnpr/v7i9.33. Tropical Journal of Natural Product Research (TJNPR), 7(9), 4065-4069. https://tjnpr.org/index.php/home/article/view/2668
Section
Articles
Author Biographies

Mohammed Mamman, Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria

Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria, Nigeria

Emmanuel O. Balogun, Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria, Nigeria

Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria

How to Cite

Tauheed, A. M., Mamman, M., Ahmed, A., Ibrahim, B., Aliyu-Amoo, H., Yahaya, S. F., & Balogun, E. O. (2023). Phytochemistry and Antitrypanosomal Effects of Acacia nilotica, Tamarindus indica and Terminalia avicennioides Using Drug Incubation Infectivity Test: http://www.doi.org/10.26538/tjnpr/v7i9.33. Tropical Journal of Natural Product Research (TJNPR), 7(9), 4065-4069. https://tjnpr.org/index.php/home/article/view/2668

References

Brun R, Blum J, Chappuis F, Burri C. Human African trypanosomiasis. Lancet. 2010; 375: 148–159.

Bezie M, Girma M, Dagnachew S, Tadesse D, Tadesse G. African trypanosomes: virulence factors, pathogenicity and host responses. J Vet Adv. 2014; 4: 732–745.

Kato CD, Nanteza A, Mugasa C, Edyelu A, Matovu E, Alibu VP. Clinical profiles, disease outcome and comorbidities among T: b. rhodesiense sleeping sickness patients in Uganda. PLoS One. 2015; 10, e0118370.

Nakayima J, Nakao R, Alhassan A, Mahama C, Afakye K, Sugimoto C. Molecular epidemiological studies on animal trypanosomiases in Ghana. Parasit. Vectors 2012. 5: 217.

Welburn SC, Maudlin I, Simarro PP. Controlling sleeping sickness−areview. Parasitol. 2009; 136: 1943–1949.

Munday JC, Settimo L, de Koning HP. Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei. Front Pharmacol. 2015; 6: 32.

Sima M, Havelkova H, Quan L, Svobodova M, Jarosikova T, Vojtiskova J, Stassen AP, Demant P, Lipoldova M. Genetic control of resistance to Trypanosoma brucei brucei infection in mice. PLoS Negl Trop Dis. 2011; 5: e1173.

Stijlemans B, Cnops J, Naniima P, Vaast A, Bockstal V, De Baetselier P, Magez S. Development of a pH rodo-based assay for the assessment of in vitro and in vivo erythrophagocytosis during experimental trypanosomosis. PLoS Negl Trop Dis. 2015; 9: e0003561.

Leigh O, Emikpe B, Ogunsola J. Histopathological changes in some reproductive and endocrine organs of Trypanosoma brucei infected West African Dwarf goat does. Bulg J Vet Med. 2014; 18: 31–39.

Nyimba PH, Komba EV, Sugimoto C, Namangala B. Prevalence and species distribution of caprine trypanosomosis in Sinazongwe and Kalomodistricts of Zambia. Vet Parasitol. 2015; 210: 125–130.

Yaro M, Munyard KA, Stear MJ, Groth DM. Combatting African animal trypanosomiasis (AAT) in livestock: thpotential role of trypanotolerance. Vet Parasitol. 2016; 225: 43–52

Shaw APM, Wint GRW, Cecchi G, Torr SJ, Mattioli RC, Robinson TP. Mapping the benefit-cost ratios of interventions against bovine trypanosomosis in Eastern Africa. Prev Vet Med. 2015; 122: 406–416.

Giordani F, Morrison LJ, Rowan TG, de Koning H, Barrett MP. The animal trypanosomiases and their chemotherapy: a review. Parasitol. 2016; 143: 1862–1889.

Holmes P. On the road to elimination of Rhodesiense human African trypanosomosis: first WHO meeting of stakeholders. PLoS Neg Trop Dis. 2015; 9: e0003571.

Morrison LJ, Vezza L, Rowan T, Hope JC. Animal African trypanosomosis: Time to increase focus on clinically relevant parasite and host species. Trends Parasitol. 2016; 32: 599-607.

Alsan M. The effect of the tsetse fly on African development. Am Econ Rev. 2015; 105: 382–410.

Eghianruwa KI, Oridupa OA. Chemotherapeutic control of trypanosomosis – a review of past measures, current status and future trends. Veterinarski Arhiv. 2018; 88: 245-270.

Hamill L, Picozzi K, Fyfe J, von Wissmann B, Wastling S, Wardrop N, Selby R, Acup CA et al. Evaluating the impact of targeting livestock for the prevention of human and animal trypanosomiasis, at village level, in districts newly affected with T.b. rhodesiense in Uganda. Infect Di. Poverty

; 6: 1–12.

Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015; 14: 111–129.

Ganesan A. The impact of natural products upon modern drug discovery. Curr Opin Chem Biol. 2008; 12: 306-17.

WHO- World Health Organisation. WHO expert committee on specifications for pharmaceutical preparations, WHO Technical Report Series 2003; 908.

National Academy of Sciences. Firewood Crops; Shrubs and Tree Species for Energy Production Vol. I & II. National Academy Press, Washington, D.C. 1980.

Singh BN, Singh BR, Singh RL, Prakash D, Sharma BK, Singh HB. Antioxidant and anti-quorum sensing activities of green pods of Acacia nilotica L. Food Chem Toxicol 2009; 47: 778–786.

Rather LJ, Mohammad SF. Acacia nilotica (L): A review of its traditional uses, phytochemistry, and pharmacology. Sustainable Chem Pharm. 2015; 2: 12-30.

Havinga RM, Hartl A, Putscher J, Prehsler S, Buchmann C, Vogl CR. Tamarindus indica L. (Fabaceae): patterns of use in traditional African medicine. J Ethnopharmacol. 2010; 127(3): 573-588.

Dagar JC, Singh G, Singh NT. „Evolution of crops in agroforestry with Teak (Tectoma grandis), Maharukh (Ailanthus excelsa) and Tamarind (Tamarindus indica) on reclaimed salt-affected soils‟ J Trop Forest Sci. 1995; 7: 623–34.

Bhadoriya SS, Ganeshpurkar A, Narwaria J, Rai G, Jain AP. Tamarindus indica: extent of explored potential. Pharmacogn Rev. 2011; 5: 73-81.

Cock IE. The medicinal properties and phytochemistry of plants of the genus Terminalia (Combretaceae). Inlfammopharmacol. 2015; 23: 203-29.

Mann A, Ifarajimi OR, Adewoye AT, Ukam C, Udeme EE, Okorie II, Sakpe MS, Ibrahim DR, Yahaya YA, Kabir AY, Ogbadoyi EO. In vivo antitrypanosomal effects of some medicinal plants from Nupeland of north central Nigeria. Afr J Tradit Complement Altern Med, 2011; 8(1),15-21.

OECD- Organization for Economic Co-operation and Development. OECD guidelines for the testing of chemicals. OECD/OCDE 2008; 425: 1–27

Tauheed AM, Mamman M, Ahmed A, Suleiman MM, Balogun EO. In vitro and in vivo antitrypanosomal efficacy of combination therapy of Anogeissus leiocarpus, Khaya senegalensis and potash. J Ethnopharmacol. 2020; 258: 112805.

Tauheed AM, Mamman M, Ahmed A, Suleiman MM, Balogun EO. Partially purified leaf fractions of Azadirachta indica inhibit trypanosome alternative oxidase and exert antitrypanosomal effects on Trypanosoma congolense. Acta Parasitol. 2021; 10.1007/s11686-021-00437-w

Kaminsky R, Gumm ID, Zweygarth E, Chuma F. A drug incubation infectivity test (DIIT) for assessing resistance in trypanosomes. Vet Parasitol. 1990; 34: 335–343.

Fraenkel, G.S. The Raison d'Être of Secondary Plant Substances. Sci. 1959; 129(3361): 1466-1470.

Weng JK, Philippe RN, Noel JP. The rise of chemodiversity in plants. Sci. 2012; 336: 1667–1670.

Krstin S, Mohamed T, Wang X, Wink M. How do the alkaloids emetine and homoharringtonine kill trypanosomes? An insight into their molecular modes of action. Phytomed. 2016; 23: 1771-1777.

Nnadi CO, Ebiloma GU, Black JA, Nwodo NJ, Lemgruber L, Schmidt TJ, de Koning H. Potent antitrypanosomal activities of 3-aminosteroids against African trypanosomes: investigation of cellular effects and of cross-resistance with existing drugs. Molecules. 2019; 24: 268.

Imieje V, Zaki AA, Fasinu PS, Ali Z, Khan IA, Tekwani B, Khan SI, Nosa EO, Falodun A. Antiprotozoal and Cytotoxicity Studies of Fractions and Compounds from Enantia chlorantha. TJNPR 2017; 6(8): 1268-1273.

Rosenkranz V, Wink M. Alkaloids induce programmed cell death in bloodstream forms of trypanosomes (Trypanosoma b. brucei). Molecules. 2008; 13: 2462-2473.

Ibrahim MA, Musa AM, Aliyu AB, Mayaki HS, Gideon A, Islam MS. Phenolics-rich fraction of Khaya senegalensis stem bark: antitrypanosomal activity and amelioration of some parasite-induced pathological changes. Pharm Biol. 2013; 51: 906-913.

Diovu EO, Onah CO, Odo KE, Amaechina IN, Akpadolu UD, Nwodo AJ, Chah CAT, Akupue CM, Nnadi CO. Sesquiterpene Lactone-Rich Extract of Tithonia diversifolia (Hemsley) A. Gray (Asteraceae) suppresses Trypanosoma brucei brucei in both In Vivo and In Vitro Experimental Models. 2022; 6(8): 1268-1273.

Tewabe Y, Bisrat D, Terefe G, Asres K. Antitrypanosomal activity of aloin and its derivatives against Trypanosoma congolense field isolate. BMC Vet Res. 2014; 4736181.

Kwofie KD, Tung NH, Suzuki-Ohashi M, AmoaBosompem M, Adegle R, Sakyiamah MM, et al. Antitrypanosomal Activities and Mechanisms of Action ofNovel Tetracyclic Iridoids from Morinda lucida Benth. Antimicrob Agents Chemother. 2016; 60: 3283-3290.

Hartung T, Daston G. Are in vitro tests suitable for regulatory use? Toxicological Sci. 2009; 111: 233-237.

Gillingwater K, Kunz C, Braghiroli C, Boykin DW, Tidwell RR, Brun R. In vitro, ex vivo, and in vivo activities of diamidines against Trypanosoma vivax. Antimicrob Agents Chemother. 61, e02356-16.

Atawodi SE. Comparative in vitro trypanocidal activities of petroleum ether, chloroform and aqueous extracts of some Nigerian Savannah plants. Afr J Biotechnol. 2005; 4: 177- 182.

Chechet GD, Yahaya H, Nok AJ. In vitro and in vivo Antitrypanosomal potentials of Afrormosia laxiflora and Khaya senegalensis against Trypanosoma brucei brucei. Nig Vet J 2018; 39: 269-284.