Phytochemical Screening, Antioxidant and Xanthine Oxidase Inhibitory Activities of <i>Vitis heyneana</i> Schult. Stem Extracts From Vietnam

http://www.doi.org/10.26538/tjnpr/v7i9.20

Authors

  • Linh K.H. Nguyen Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
  • Chen V. Tran Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.
  • Nguyen D. Pham Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
  • Tan V. Tran Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam.

Keywords:

Xanthine oxidase, Phytoconstituents, Anti-gout, Antioxidant, Vitis heyneana

Abstract

Vitis heyneana Schult. (family Vitaceae) is locally known as ‗Wild Grapes‘. It has long been used traditionally as a remedy for irregular menstruation, furuncle, bronchitis, and arthritis-related diseases. Antioxidant and xanthine oxidase (XO) inhibitory activities have not been reported in this species. Therefore, the present study aim to investigate the antioxidant and XO inhibitory activities of the plant. Phytochemical screening of the ethanol stem extract was carried out using standard method. The antioxidant activity was evaluated using the 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging method. The XO inhibitory activity was evaluated using standard procedure. Phytochemical screening showed the presence of carbohydrates, essential oils, amino acids, triterpenoids, saponins, coumarins, flavonoids, and tannins. The ethyl acetate fraction showed the highest antioxidant activity with IC50 value of 21.90 ± 0.17 µg/mL, followed by chloroform fraction (IC50 = 35.92 ± 0.28 µg/mL), petroleum ether fraction (IC50 = 52.22 ± 0.20 µg/mL), and aqueous fraction (IC50 = 143.37 ± 1.12 µg/mL). The plant extract exhibited significant XO inhibitory activity with the ethyl acetate fraction showing the highest activity (IC50 = 11.28 ± 0.41 µg/mL) followed by the aqueous fraction (IC50 = 17.51 ± 0.38 µg/mL), chloroform fraction (IC50
= 35.75 ± 0.19 µg/mL), and the petroleum ether fraction (IC50 = 130.20 ± 0.24 µg/mL). These results suggest the potential use of V. heyneana stems in the management of gout as well as an antioxidant to eliminate free radicals and reduce the oxidative stress associated with gout.

References

Martillo MA, Nazzal L, Crittenden DB. The crystallization of monosodium urate. Curr Rheumatol Rep. 2014; 16(2):1-8. doi:10.1007/s11926-013-0400-9.

Cabău G, Crișan TO, Klück V, Popp RA, Joosten LA. Urate‐induced immune programming: Consequences for gouty arthritis and hyperuricemia. Immunol Rev. 2020; 294(1):92-105. doi:10.1111/imr.12833.

Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt Jr PIH. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J. 2016; 473(24):4527–4550. doi:10.1042/BCJ20160503C.

Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020; 2020. doi:10.1155/2020/8609213.

Mohamed Isa SSP, Ablat A, Mohamad J. The antioxidant and xanthine oxidase inhibitory activity of Plumeria rubraflowers. Molecules. 2018; 23(2):400. doi:10.3390/molecules23020400.

Ma J, Yang L, Ren J, Yang J. Autophagy, oxidative stress, and redox regulation. Autophagy Cardiometa Dise. 2018;(Chapter 20):237-251. doi:10.1016/B978-0-12-805253-2.00020-1.

Hafez RM, Abdel-Rahman TM, Naguib RM. Uric acid in plants and microorganisms: Biological applications and genetics—A review. J Adv Res. 2017; 8:475-486. doi:10.1016/j.jare.2017.05.003.

Radi R, Denicola A, Morgan B, Zielonka J. Foreword to the free radical biology and medicine special issue on Current fluorescence and chemiluminescence approaches in free radical and redox biology . Free Radic Biol Med. 2018; 128:1–2. doi:10.1016/j.freeradbiomed.2018.09.027.

Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants. 2019; 8(3):72. doi:10.3390/antiox8030072.

Van Chen T, Cuong TD, Quy PT, Bui TQ, Van Tuan L, Van Hue N, Triet NT, Ho DV, Bao NC, Nhung NTA. Antioxidant activity and α-glucosidase inhibitability of Distichochlamys citrea M.F. Newman rhizome fractionated extracts: in vitro and in silico screenings. Chem Pap. 2022; 76:5655–5675. doi:10.1007/s11696-022-02273-2.

Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev. 2015; 24:29-39. doi:10.1016/j.arr.2015.01.003.

Liu N, Xu H, Sun Q, Yu X, Chen W, Wei H, Lu W. The role of oxidative stress in hyperuricemia and xanthine oxidoreductase (XOR) inhibitors. Oxidative Med Cell Longev. 2021; 2021. doi:10.1155/2021/1470380.

Cicero AF, Fogacci F, Cincione RI, Tocci G, Borghi C. Clinical effects of xanthine oxidase inhibitors in hyperuricemic patients. Med Princ Pract. 2021; 30(2):122-130. doi:10.1159/000512178.

Kellerman RD, Rakel D, KUSM-W. 2021. Medical Practice Association. Conn's Current Therapy. 2022. Elsevier Health Sciences.

Shih HJ, Kao MC, Tsai PS, Fan YC, Huang CJ. Long-term allopurinol use decreases the risk of prostate cancer in patients with gout: a population-based study. Prostate Cancer Prostatic Dis. 2017; 20(3):328-333. doi:10.1038/pcan.2017.14.

Vargas-Santos AB, Peloquin CE, Zhang Y, Neogi T. Association of chronic kidney disease with allopurinol use in gout treatment. JAMA Intern Med. 2018; 178(11):1526. doi:10.1001/jamainternmed.2018.4463.

Schlesinger N and Brunetti L. Beyond urate lowering: Analgesic and anti-inflammatory properties of allopurinol. Semin Arthritis Rheum. 2020;50(3):444-450. doi:10.1016/j.semarthrit.2019.11.009.

Sabina EP, Nagar S, Rasool M. A role of piperine on monosodium urate crystal-induced inflammation—An experimental model of gouty arthritis. Inflamm. 2011; 34:184-192. doi:10.1007/s10753-010-9222-3.

Liu L, Zhang L, Ren L, Xie Y. Advances in structures required of polyphenols for xanthine oxidase inhibition. Food Frontiers. 2020;1(2):152-167. doi:10.1002/fft2.27.

Feng S, Wu S, Xie F, Yang CS, Shao P. Natural compounds lower uric acid levels and hyperuricemia: Molecular mechanisms and prospective. Trends Food Sci Technol. 2022; 123:87-102. doi:10.1016/j.tifs.2022.03.002.

POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. [Online]. 2023. [cited 2023 Jun 16]. Vitis L. Available from:

https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:325876-2#children.

Ha DT, Long PT, Hien TT, Tuan DT, An NTT, Khoi NM, Hung TM. Anti-inflammatory effect of oligostilbenoids from Vitis heyneana in LPS-stimulated RAW 264.7 macrophages via suppressing the NF-κB activation. Chem Cent J. 2018; 12(14):1-9. doi: 10.1186/s13065-018-0386-5.

Long PT, Ha DT, Oanh HV, Anh NTN, Thuy PT, Trang NT, Dung LV, Huyen PT. Morphological and Anatomical Characteristics of Vitis heyneana Roem. & Schult. J Med Mater. 2017; 22(2):120-123.

Li Y, Li Z, Zhang C, Zhang X, Cui Z, Li M. Chemical constituents from Vitis heyneana Roem. & Schult (Vitaceae). Biochem Syst Ecol. 2013;50:266-268. doi:10.1016/j.bse.2013.04.012.

Amalia A, Nugraha MFI, Sukenda S, Elya B. In VitroPhytochemical, Antioxidant, and Antibacterial Evaluations of Various Extracts of Eleocharis dulcis (Burm. f.) Trin. ex Hensch. Trop J Nat Prod Res. 2023; 7(5):2911-2918. doi:10.26538/tjnpr/v7i5.11.

Van Chen T, Lam DNX, Thong CLT, Nguyen DD, Nhi NTT, Triet NT. Morphological characters, pharmacognostical parameters, and preliminary

phytochemical screening of Curcuma sahuynhensisŠkorničk. & N.S. Lý in Quang Ngai Province, Vietnam. Biodiversitas. 2022; 23(8):3907-3920.

doi:10.13057/biodiv/d230807.

Tran CV, Vo TM, Bui PT, Duong DNP, Duong LXN, Dinh DQ, Nguyen HTT. Phytochemical Screening, Antioxidant Activity and α‐Glucosidase Inhibitability of Bauhinia x blakeana Dunn Leaf and Flower Extracts from Vietnam. Trop J Nat Prod Res. 2023; 7(4):2737-2743. doi:10.26538/tjnpr/v7i4.11.

Abdulhafiz F, Mohammed A, Kayat F, Bhaskar M, Hamzah Z, Podapati SK, Reddy LV. Xanthine oxidase inhibitory activity, chemical composition, antioxidant properties and GC-MS Analysis of Keladi Candik (Alocasia longilobaMiq). Molecules. 2020; 25(11):2658. doi:10.3390/molecules25112658.

Falodun A, Qadir MI, Choudhary MI. Isolation and characterization of xanthine oxidase inhibitory constituents of Pyrenacantha staudtii. Acta Pharm Sin. 2009; 44(4):390-394.

Manurung H, Susanto D, Kusumawati E, Aryani R, Nugroho RA, Kusuma R, Sari RD. Phytochemical, GC-MS analysis and antioxidant activities of leaf methanolic extract of Lai (Durio kutejensis), the endemic plant of Kalimantan, Indonesia. Biodiversitas. 2022; 23(11):5566-5573. doi:

13057/biodiv/d231104.

Zelotek U, Mikulska S, Nagajek M, Swieca M. The effect of different solvents and number of extraction steps on the polyphenol content and antioxidant capacity of basil leaves (Ocimum basilicum L.) extracts. Saudi J Biol Sci. 2016; 23:628-633. doi:10.1016/j.sjbs.2015.08.002.

Bhagawan WS, Suproborini A, Putri DLP, Nurfatma A, Putra RT. Ethnomedicinal study, phytochemical characterization, and pharmacological confirmation of selected medicinal plant on the northern slope of Mount Wilis, East Java, Indonesia. Biodiversitas. 2022; 23(8):4303-4313. doi:10.13057/biodiv/d230855.

Dresch RR, Dresch MK, Guerreiro AF, Biegelmeyer R, Holzschuh MH, Rambo DF, Henriques AT. Phenolic compounds from the leaves of Vitis labrusca and Vitis vinifera L. as a source of waste byproducts: Development and validation of LC method and antichemotactic activity. Food Anal Methods. 2014; 7:527–539. doi:10.1007/s12161-013-9650-4.

Salehi B, Vlaisavljevic S, Adetunji CO, Adetunji JB, Kregiel D, Antolak H, del Mar Contreras M. Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends Food Sci Technol. 2019; 91:362-379. doi:10.1016/j.tifs.2019.07.042.

Şöhretoğlu D and Sari S. 2020. Flavonoids as alphaglucosidase inhibitors: Mechanistic approaches merged with enzyme kinetics and molecular modelling. Phytochem Rev. 2020; 19(5):1081-1092. doi:10.1007/s11101-019-09610-6.

Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules. 2020; 25(22):5243. doi:10.3390/molecules25225243.

Patel K, Kumar V, Rahman M, Verma A, Patel DK. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‗Hyperin‘: Health benefits of the past, the present, the future. Beni-Suef Univ J Basic Appl Sci. 2018; 7:31–42. doi:10.1016/j.bjbas.2017.05.009.

Mazidi M, Katsiki N, Banach M. A higher flavonoid intake is associated with less likelihood of nonalcoholic fatty liver disease: results from a multiethnic study. J Nutr Biochem. 2019; 65:66-71. doi:10.1016/j.jnutbio.2018.10.001.

Olszowy M. What is responsible for antioxidant properties of polyphenolic compounds from plants?. Plant Physiol Biochem. 2019; 144:135-143. doi:10.1016/j.plaphy.2019.09.039.

Farha AK, Yang QQ, Kim G, Li HB, Zhu F, Liu HY, Corke H. Tannins as an alternative to antibiotics. Food Biosci. 2020; 38:100751. doi:10.1016/j.fbio.2020.100751.

Sharma K, Kumar V, Kaur J, Tanwar B, Goyal A, Sharma R, Kumar A. Health effects, sources, utilization and safety of tannins: A critical review. Toxin Rev. 2021; 40(4):432-444. doi:10.1080/15569543.2019.1662813.

Zhu JJ, Jiang JG. Pharmacological and nutritional effects of natural coumarins and their structure–activity relationships. Mol Nutr Food Res. 2018; 62(14):1701073. doi:10.1002/mnfr.201701073.

Annunziata F, Pinna C, Dallavalle S, Tamborini L, Pinto A. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int J Mol Sci. 2020; 21(13):4618. doi:10.3390/ijms21134618.

Carneiro A, Matos MJ, Uriarte E, Santana L. Trending topics on coumarin and its derivatives in 2020. Molecules. 2021; 26(2):501. doi:10.3390/molecules26020501.

Sharifi-Rad J, Cruz-Martins N, López-Jornet P, Lopez EPF, Harun N, Yeskaliyeva B, Cho WC. Natural coumarins: exploring the pharmacological complexity and underlying molecular mechanisms. Oxid Med Cell Longev. 2021; 2021:6492346. doi:10.1155/2021/6492346.

Conti MV, Guzzetti L, Panzeri D, De Giuseppe R, Coccetti P, Labra M, Cena H. Bioactive compounds in legumes: Implications for sustainable nutrition and health in the elderly population. Trends Food Sci Technol. 2021; 117:139–147. doi:10.1016/j.tifs.2021.02.072.

Mustafa AM, Abouelenein D, Acquaticci L, Alessandroni L, Angeloni S, Borsetta G, Vittori S. Polyphenols, Saponins and Phytosterols in Lentils and Their Health Benefits: An Overview. Pharmaceuticals. 2022; 15(10):1225. doi:10.3390/ph15101225.

Falodun A, Uzoekwe AS, Shengxiang Q. Phytochemical, Anticancer and Antioxidant Evaluation of Potential Chemical Constituents of Calliandria Surinamensis. Nig J Biotech. 2010; 21:55-59.

Hudaib MM, Tawaha KA, Mohammad MK, Assaf AM, Issa AY, Alali FQ, Bustanji YK. Xanthine oxidase inhibitory activity of the methanolic extracts of selected Jordanian medicinal plants. Pharmacogn Mag. 2011; 7(28):320. doi:10.4103/0973-1296.90413.

Jing L, Ma H, Fan P, Gao R, Jia Z. Antioxidant potential, total phenolic and total flavonoid contents of Rhododendron anthopogonoides and its protective effect on hypoxiainduced injury in PC12 cells. BMC Complem Altern Med. 2015; 2015(15):287. doi:10.1186/s12906-015-0820-3.

Fais A, Era B, Asthana S, Sogos V, Medda R, Santana L, Kumar A. Coumarin derivatives as promising xanthine oxidase inhibitors. Int J Biol Macromol. 2018; 120:1286-1293. doi:10.1016/j.ijbiomac.2018.09.001.

Mehmood A, Ishaq M, Zhao L, Safdar B, Rehman AU, Munir M, Wang C. Natural compounds with xanthine oxidase inhibitory activity: A review. Chem Biol Drug Des. 2019; 93(4):387-418. doi:10.1111/cbdd.13437.

Alvionita M and Dewi LC. In vitro and in silico analysis of xanthine oxidase inhibitory activity of peanut (Arachis hypogaea L.) shell ethanol extract. IOP Conf Ser: Earth Environ Sci. [Indonesian]. 2020; 475(1):012080. doi:10.1088/1755-1315/475/1/012080.

Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines. 2018; 5(3):93. doi:10.3390/medicines5030093.

Thapa CB, Paudel MR, Bhattarai HD, Pant KK, Devkota HP, Adhikari YP, Pant B. Bioactive secondary metabolites in Paris polyphylla Sm. and their biological activities: A review. Heliyon. 2022; 8(2): e08982. doi:10.1016/j.heliyon.2022.e08982.

Hyun TK, Kim HC, Kim JS. Antioxidant and antidiabetic activity of Thymus quinquecostatus Celak. Ind Crops Prod. 2014;52:611-616. doi:10.1016/j.indcrop.2013.11.039.

Egharevba E, Chukwuemeke-Nwani P, Eboh U, Okoye E, Bolanle IO, Oseghale IO, Imieje VO, Erharuyi O, Falodun A. Evaluation of the antioxidant and hypoglycaemic potentials of the leaf extracts of Stachytarphyta jamaicensis(Verbenaceae). Trop J Nat Prod Res. 2019; 3(5):170-174. doi: 10.26538/tjnpr/v3i5.4.

Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010;4(8):118. doi:10.4103/0973-7847.70902.

Gasmi A, Mujawdiya PK, Noor S, Lysiuk R, Darmohray R, Piscopo S, Bjørklund G. Polyphenols in Metabolic Diseases. Molecules. 2022; 27(19):6280. doi:10.3390/molecules27196280.

Rodrigo R, Miranda A, Vergara L. Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin Chim Acta. 2011; 412(5-6):410-424. doi: 10.1016/j.cca.2010.11.034.

Dwibedi V, Jain S, Singhal D, Mittal A, Rath SK, Saxena S. Inhibitory activities of grape bioactive compounds against enzymes linked with human diseases. Appl Microbiol Biotechnol. 2022; 106:1399–1417. doi:10.1007/s00253-022-11801-9.

Osuntokun OS, Oyedokun SO, Olayiwola G, Adekomi DA, Oladokun OO, Adedokun KI, Ayoka AO. Proanthocyanidin-Rich-Fraction of Vitis vinifera Seed Abrogates Convulsion Indices: Glutamatergic/NMDA Inhibition, Enhancement of Anti-Neu N, and NRF2 Expression. Trop J Nat Prod Res. 2022; 6(6):957-961. doi:10.26538/tjnpr/v6i6.23.

Published

2023-10-03

How to Cite

Nguyen, L. K., Tran, C. V., Pham, N. D., & Tran, T. V. (2023). Phytochemical Screening, Antioxidant and Xanthine Oxidase Inhibitory Activities of <i>Vitis heyneana</i> Schult. Stem Extracts From Vietnam: http://www.doi.org/10.26538/tjnpr/v7i9.20. Tropical Journal of Natural Product Research (TJNPR), 7(9), 3981–3988. Retrieved from https://tjnpr.org/index.php/home/article/view/2624