The Toxic Impact of Silver Nanoparticles Synthesized Extracellularly by Aspergillus flavus on Breast Cancer Cells (MDA-MB-231), as Well as Their Antibacterial Activity http://www.doi.org/10.26538/tjnpr/v7i9.14

Main Article Content

Ibrahim I. Alfarrayeh
Safa S. Al-Alwani
Yaseen T. Al Qaisi
Ahmad Z. Alsarayreh
Laila Al-Omari
Jehad F. Alhmoud

Abstract

Silver nanoparticles (AgNPs), with unique properties and diverse uses from antimicrobials to drug carriers, have gained prominence. This study examined the anti-cancer and anti-bacterial properties of biogenic AgNPs produced from the filtrate of Aspergillus flavus. AgNPs (0–200 μg/mL) were assessed against fibroblasts and breast cancer cell lines (MDA-MB-231). AgNPs were antiproliferative to MDA-MB-231 cells at 6 μg/mL and above but cytotoxic to fibroblasts at 12 µg/mL and beyond. MDA-MB-231 cells were treated to the marginally effective concentration of AgNPs, 3 μg/mL, in order to evaluate gene regulation. However, there was a significant downregulation of cyclin D1 and BCL-2. Nevertheless, MDA-MB-231 cells treated with 3 μg/mL AgNPs exhibited a significant increase in the pro-apoptotic caspase 3 genotype. After MDA-MB-231 cells were subjected to 3 µg/mL AgNPs, the pro-inflammatory cytokines IL-1β and IL-6 were significantly downregulated. At 3 μg/mL, AgNPs raised TNF-α, an antiinflammatory cytokine. AgNPs exhibited substantial antibacterial efficacy against all examined bacterial strains through the implementation of the disc diffusion methodology. However, the MIC data for AgNPs' antibacterial activity showed that Salmonella enterica, Salmonella typhi, Staphylococcus epidermidis, and Staphylococcus aureus were the highest influenced stains, with Minimum Inhibitory Concentration (MIC) value of 6.38 μg/mL, whereas Escherichia coli
ATCC 25922, Pseudomonas aeruginosa, and Escherichia coli ATCC 10145 had MIC value of 19.15 μg/mL. In conclusion, AgNPs from A. flavus have potential antibacterial effects against various pathogens and showed cytotoxicity against MDA-MB-231 breast cancer cells, indicating wide-ranging biological relevance.

Downloads

Download data is not yet available.

Article Details

How to Cite
Alfarrayeh, I. I., Al-Alwani, S. S., Al Qaisi, Y. T., Alsarayreh, A. Z., Al-Omari, L., & Alhmoud, J. F. (2023). The Toxic Impact of Silver Nanoparticles Synthesized Extracellularly by Aspergillus flavus on Breast Cancer Cells (MDA-MB-231), as Well as Their Antibacterial Activity: http://www.doi.org/10.26538/tjnpr/v7i9.14. Tropical Journal of Natural Product Research (TJNPR), 7(9), 3936-3943. https://tjnpr.org/index.php/home/article/view/2616
Section
Articles

How to Cite

Alfarrayeh, I. I., Al-Alwani, S. S., Al Qaisi, Y. T., Alsarayreh, A. Z., Al-Omari, L., & Alhmoud, J. F. (2023). The Toxic Impact of Silver Nanoparticles Synthesized Extracellularly by Aspergillus flavus on Breast Cancer Cells (MDA-MB-231), as Well as Their Antibacterial Activity: http://www.doi.org/10.26538/tjnpr/v7i9.14. Tropical Journal of Natural Product Research (TJNPR), 7(9), 3936-3943. https://tjnpr.org/index.php/home/article/view/2616

References

Naganthran A, Verasoundarapandian G, Khalid FE,

Masarudin MJ, Zulkharnain A, Nawawi NM, Karim M, Che

Abdullah CA, Ahmad SA. Synthesis, characterization and

biomedical application of silver nanoparticles. Materials

(Basel). 2022;15(2):427.

Khleifat K, Alqaraleh M, Al-limoun M, Alfarrayeh I,

Khatib R, Qaralleh H, Alsarayreh A, Al Qaisi Y, Abu

Hajleh M. The ability of Rhizopus stolonifer MR11 to

biosynthesize silver nanoparticles in response to various

culture media components and optimization of process

parameters required at each stage of biosynthesis. J Ecol

Eng. 2022;23(8):89-100.

doi:https://doi.org/10.12911/22998993/150673

Al-Limoun M, Qaralleh HN, Khleifat KM, Al-Anber M,

Al-Tarawneh A, Al-sharafa K, Kailani MH, Zaitoun MA, Matar SA, Al-soub T. Culture media composition and reduction potential optimization of mycelia-free filtrate for the biosynthesis of silver nanoparticles using the fungus Tritirachium oryzae W5H. Curr Nanosci. 2020;16(5):757-

Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-basedcrystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci. 1999;96(24):13611-13614.

Qaralleh H, Khleifat KM, Al-Limoun MO, Alzedaneen FY, Al-Tawarah N. Antibacterial and synergistic effect of biosynthesized silver nanoparticles using the fungiTritirachium oryzae W5H with essential oil of Centaurea damascena to enhance conventional antibiotics activity. Adv Nat Sci Nanosci Nanotechnol. 2019;10(2):25016.

Al-Soub A, Khleifat K, Al-Tarawneh A, Al-Limoun M, Alfarrayeh I, Al Sarayreh A, Al Qaisi Y, Qaralleh H, Alqaraleh M, Albashaireh A. Silver nanoparticles biosynthesis using an airborne fungal isolate, Aspergillus flavus: optimization, characterization and antibacterial activity. Iran J Microbiol. 2022;14(4):518-528.

Khleifat K, Qaralleh H, Al-Limoun M. Antibacterial Activity of Silver Nanoparticles Synthesized by Aspergillus flavus and its Synergistic Effect with Antibiotics. J Pure Appl Microbiol. (2022); 16(3):1722-1735. doi: 10.22207/JPAM.16.3.13

Khleifat KM. Biodegradation of phenol by Actinobacillussp.: Mathematical interpretation and effect of some growth conditions. Bioremediat J. 2007;11(3):103-112.

Singh A, Gautam PK, Verma A, Singh V, Shivapriya PM, Shivalkar S, Sahoo AK, Samanta SK. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol Reports. 2020;25:e00427.

Khleifat KM, Abboud MM, Al-Mustafa AH, Al-Sharafa KY. Effects of carbon source and Vitreoscilla hemoglobin (VHb) on the production of β-galactosidase in Enterobacter aerogenes. Curr Microbiol. 2006; 53:277-81.

Abboud, M. M., Aljundi, I. H., Khleifat, K. M., and Dmour, S. Biodegradation kinetics and modeling of whey lactose by bacterial hemoglobin VHb-expressing Escherichia coli strain. Biochem Eng J. 2010; 48(2): 166-172.

Gurunathan S, Qasim M, Park C, Yoo H, Kim JH, Hong K. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int J Mol Sci. 2018;19(8):2269.

Oves M, Rauf MA, Aslam M, Qari HA, Sonbol H, Ahmad I, Zaman GS, Saeed M. Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J Biol Sci. 2022;29(1):460-471.

Patil SB, Hublikar L V, Raghavendra N, Shanbhog C, Kamble A. Synthesis and exploration of anticancer activity of silver nanoparticles using Pandanus amaryllifolius Roxb. leaf extract: Promising approach against lung cancer and breast cancer cell lines. Biologia (Bratisl). 2021;76:3533-

Lin J, Huang Z, Wu H, Zhou W, Jin P, Wei P, Zhang Y, Zheng F, Zhang J, Xu J. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy. 2014;10(11):2006-2020.

Khleifat KM, Matar SA, Jaafreh M, Qaralleh H, Al-limoun MO, Alsharafa KY. Essential oil of Centaurea damascenaaerial parts, antibacterial and synergistic effect. J Essent Oil Bear Plants. 2019;22(2):356-367.

Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Hariharan N, Eom SH. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surfaces B Biointerfaces. 2009;74(1):328-335.

Khlaifat AM, Al-limoun MO, Khleifat KM, Al Tarawneh AA, Qaralleh H, Rayyan EA, Alsharafa KY. Antibacterial synergy of Tritirachium oryzae-produced silver nanoparticles with different antibiotics and essential oils derived from Cupressus sempervirens and Asteriscus graveolens (Forssk). Trop J Pharm Res. 2019;18(12):2605-2616.

Khleifat K, Abboud MM. Correlation between bacterial haemoglobin gene (vgb) and aeration: their effect on the growth and α‐amylase activity in transformed Enterobacter aerogenes. J Appl Microbiol. 2003;94(6):1052-1058.

Al-Tawarah NM, Qaralleh H, Khlaifat AM, Nofal MN, Alqaraleh M, Khleifat KM, Al-limoun MO, Al Shhab MA. Anticancer and antibacterial properties of Verthemia iphionides essential oil/silver nanoparticles. Biomed Pharmacol J. 2020;13(3):1175-1185.

Karna SKL, Ahamad F, Faruq O, Pokharel YR. L-NωNitroarginine Inhibits the Induction of Nitric Oxide Synthase (iNOS) and Cyclooxygenase-2 (COX-2) by Inhibiting NF-κB and AP-1 Activation in RAW 264.7 Cells. Drug Des. 2016;5(135):138-2169.

Balint K, Xiao M, Pinnix CC, Soma A, Veres I, Juhasz I, Brown EJ, Capobianco AJ, Herlyn M, Liu ZJ. Activation of Notch1 signaling is required for β-catenin–mediated human primary melanoma progression. J Clin Invest. 2005;115(11):3166-3176.

Alqaraleh M, Khleifat KM, Abu Hajleh MN, Farah HS, Ahmed KAA. Fungal-Mediated Silver Nanoparticle and Biochar Synergy against Colorectal Cancer Cells and Pathogenic Bacteria. Antibiotics. 2023;12(3):597.

Obeidat NM, Zihlif MA, Alqudah DA, Alshaer W, Alqaraleh M, Abdalla SS. Effects of cyclic acute and chronic hypoxia on the expression levels of metabolism related genes in a pancreatic cancer cell line. Biomed Reports. 2022;17(4):1-11.

Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29(9):e45-e45.

Khleifat K, Tarawneh K, Ali Wedyan M, Al-Tarawneh A, Al Sharafa K. Growth kinetics and toxicity of Enterobacter cloacae grown on linear alkylbenzene sulfonate as sole carbon source. Curr Microbiol. 2008;57(4):364-370. doi:https://doi.org/10.1007/s00284-008-9203-z

Khleifat KM, Sharaf EF, Al-limoun MO. Biodegradation of 2-chlorobenzoic acid by Enterobacter cloacae: Growth kinetics and effect of growth conditions. Bioremediat J. 2015;19(3):207-217. doi:https://doi.org/10.1080/10889868.2015.1029113

Wypij M, Jędrzejewski T, Trzcińska-Wencel J, Ostrowski M, Rai M, Golińska P. Green synthesized silver nanoparticles: antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front Microbiol. 2021;12:632505.

Alfarrayeh I, Tarawneh K, Almajali D, Al-Awaida W. Evaluation of the Antibacterial and Antioxidant properties of the Methanolic extracts of four Medicinal plants selected from Wadi Al-Karak, Jordan related to their Phenolic contents. Res J Pharm Technol. 2022;15(5):2110-2116.

doi:https://doi.org/10.52711/0974-360X.2022.00350

Al-Sammarraie ON, Alsharafa KY, Al-Limoun MO, Khleifat KM, Al-Sarayreh SA, Al-Shuneigat JM, Kalaji HM. Effect of various abiotic stressors on some biochemical indices of Lepidium sativum plants. Sci Rep. 2020;10(1):1-10.

Alfarrayeh I, Pollák E, Czéh Á, Vida A, Das S, Papp G. Antifungal and Anti-Biofilm Effects of Caffeic Acid Phenethyl Ester on Different Candida Species. Antibiotics. 2021;10(11):1359-1374. doi:https://doi.org/10.3390/antibiotics10111359

AshaRani P V, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279-290.

Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int. 2013;2013.

Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011;32(36):9810-9817.

Franco-Molina MA, Mendoza-Gamboa E, Sierra-Rivera CA, Gómez-Flores RA, Zapata-Benavides P, Castillo-Tello P, Alcocer-González JM, Miranda-Hernández DF, TamezGuerra RS, Rodríguez-Padilla C. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J Exp

Clin Cancer Res. 2010;29(1):1-7.

Gianinazzi C, Grandgirard D, Imboden H, Egger L, Meli DN, Bifrare YD, Joss PC, Täuber MG, Borner C, Leib SL. Caspase-3 mediates hippocampal apoptosis in pneumococcal meningitis. Acta Neuropathol. 2003;105:499-507.

Ahmed ST, Ivashkiv LB. Inhibition of IL-6 and IL-10 signaling and Stat activation by inflammatory and stress pathways. J Immunol. 2000;165(9):5227-5237.

Yang L, Guo P, Wang P, Wang W, Liu J. IL-6/ERK signaling pathway participates in type I IFN-programmed, unconventional M2-like macrophage polarization. Sci Rep. 2023;13(1):1827.

Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell. 2006;124(4):823-835.

Guan K, Zheng Z, Song T, He X, Xu C, Zhang Y, Ma S, Wang Y, Xu Q, Cao Y. MAVS regulates apoptotic cell death by decreasing K48-linked ubiquitination of voltagedependent anion channel 1. Mol Cell Biol. 2013;33(16):3137-3149.

Khleifat KM, Abboud MM, Al-Mustafa AH. Effect of Vitreoscilla hemoglobin gene (vgb) and metabolic inhibitors on cadmium uptake by the heterologous host Enterobacter aerogenes. Process Biochem. 2006;41(4):930-4.

Wei LH, Kuo ML, Chen CA, Chou CH, Cheng WF, Chang MC, Su JL, Hsieh CY. The anti-apoptotic role of interleukin-6 in human cervical cancer is mediated by up-regulation of Mcl-1 through a PI 3-K/Akt pathway. Oncogene. 2001;20(41):5799-5809.

Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 2021;22(13):7202.

Khleifat, K. M., Abboud, M. M., Omar, S., & Al-Kurishy, J. H. Urinary tract infection in South Jordanian population. J Med Sci; 2006; 6(1), 5-11.

Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol.2007;73(6):1712-1720.

Acharya D, Singha KM, Pandey P, Mohanta B, Rajkumari J, Singha LP. Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Sci Rep. 2018;8(1):201.

Khleifat K, Homady MH, Tarawneh KA, Shakhanbeh J. Effect of Ferula hormonis extract on social aggression, fertility and some physiological parameters in prepubertal male mice. Endocrine J. 2001;48(4):473-82.

Markowska K, Grudniak A, Wolska K. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013;60(4):523-530.

Kobayashi S, Shimamura T, Monti S, Steidl U, Hetherington CJ, Lowell AM, Golub T, Meyerson M, Tenen DG, Shapiro GI. Transcriptional profiling identifies cyclin D1 as a critical downstream effector of mutant epidermal growth factor receptor signaling. Cancer Res. 2006;66(23):11389-11398.

Novakovic P, Stempak JM, Sohn KJ, Kim YI. Effects of folate deficiency on gene expression in the apoptosis and cancer pathways in colon cancer cells. Carcinogenesis. 2006;27(5):916-924.

Al Qaisi YT, Khleifat KM, Alfarrayeh II, Alsarayreh AZ. In Vivo Therapeutic Effect of Some Medicinal Plants’ Methanolic Extracts on the Growth and Development of Secondary Hydatid Cyst Infection. Acta Parasitol. 2022;67(4):1521-1534. doi:https://doi.org/10.1007/s11686-022-00605-6