The Optimization of Encapsulation Mangosteen (Garcinia mangostana L.)-Gotu Kola (Centella asiatica L. Urban) Fraction Combination in Soybean Liposome by Response Surface Methodology http://www.doi.org/10.26538/tjnpr/v7i9.15

Main Article Content

Ryan Munandar
Khairul Anam
Dwi Hudiyanti

Abstract

A recent study reported that the combination of mangosteen-gotu kola fractions showed lots of bioactivities, such as strong antioxidant, anti-bacterial, and immunomodulatory activities. However, the solubility and bioavailability of the mixture combination of mangosteen-gotu kola fraction were low. Encapsulation of the mixture in a liposome was believed to increase its solubility in water, bioavailability, and medical applications due to the similar structure between a liposome and biological cell membranes. However, liposome system has a weakness, such as low encapsulation ability which are influenced by the manufacture, and the composition of the constituents, namely cholesterol, phospholipids, and encapsulated active substances. Therefore, it was necessary to optimize liposomal formulations that produce liposomes with the best encapsulation capabilities. This study was designed to optimize the encapsulation of mixture combination of mangosteen-gotu kola fraction in liposomes using thin film hydration method and response surface methodology (RSM). The RSM optimization consisted of 13 runs with two experimental factors: mass of the mixture (5.00-15.00 mg) and mass of cholesterol (11.30-22.60 mg) as independent variables. The mass of phospholipid (113.00 mg) was used as a dependent variable. The observed parameters were encapsulation efficiency (EE) and loading capacity (LC). As a result, quadratic models were used for response prediction. The maximum response was obtained using 15 mg of mixture combination, 22.60 mg of cholesterol, and 113 mg of phospholipid. It was shown that EE and LC were 82.42% and 2.18%, respectively. The liposome-loaded mixture combination obtained had a monodispersity form with a particle size and surface charge of 912.7 nm and -24.3 mV, respectively. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Munandar, R., Anam, K., & Hudiyanti, D. (2023). The Optimization of Encapsulation Mangosteen (Garcinia mangostana L.)-Gotu Kola (Centella asiatica L. Urban) Fraction Combination in Soybean Liposome by Response Surface Methodology: http://www.doi.org/10.26538/tjnpr/v7i9.15. Tropical Journal of Natural Product Research (TJNPR), 7(9), 3944-3950. https://tjnpr.org/index.php/home/article/view/2615
Section
Articles

How to Cite

Munandar, R., Anam, K., & Hudiyanti, D. (2023). The Optimization of Encapsulation Mangosteen (Garcinia mangostana L.)-Gotu Kola (Centella asiatica L. Urban) Fraction Combination in Soybean Liposome by Response Surface Methodology: http://www.doi.org/10.26538/tjnpr/v7i9.15. Tropical Journal of Natural Product Research (TJNPR), 7(9), 3944-3950. https://tjnpr.org/index.php/home/article/view/2615

References

Kasemwattanaroj P, Moongkarndi P, Pattanapanyasat K, Mangmool S, Rodpai E, Samer J, Konlata J, Sukapirom K. Immunomodulatory activities of α-mangostin on peripheral blood mononuclear cells. Nat. Prod. Commun. 2013; 8(9):1257–1260.

Ji F, Li Z, Liu G, Niu S, Zhao N, Liu X, Hua H. Xanthones with antiproliferative effects on prostate cancer cells from the stem bark of Garcinia xanthochymus. Nat. Prod. Commun. 2012; 7(1):53-56.

Palakawong C, Sophanodora P, Pisuchpen S, Phongpaichit S. Antioxidant and antimicrobial activities of crude extracts from mangosteen (Garcinia mangostana L.) parts and some essential oils. Int. Food Res. J. 2010; 17:583-589.

Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, Kudo M, Gao M, Liu T. Therapeutic potential of Centella asiaticaand its triterpenes: A Review. Front. Pharmacol. 2020; 11:1-24. doi: 10.3389/fphar.2020.568032

Khusnawati NN, Pramono S, Sasmito E. Effect of 50% ethanolic extract of pegagan herb (Centella asiatica (L.) Urban) on cell proliferation of lymphocytes in balb/c male mice induced by hepatitis b vaccine. Tradit. Med. J. 2015; 20(3):164-169.

Jatayu D, Nursyam H, Hertika AMS. Antioxidant effect of Centella asiatica ethanolic extract to superoxide dismutase (SOD) level on Cyprinus carpio liver. Res. J. Life Sci. 2018; 5(3):163-172.DOI: https://doi.org/10.21776/ub.rjls.2018.005.03.4

Rahman M, Hossain S, Rahaman A, Fatima N, Nahar T, Uddin B, Basunia MA. Antioxidant activity of Centella asiatica ( Linn .) urban : impact of extraction solvent polarity. J. Pharmacogn. Phytochem. 2013; 1(6):27–32.

Aulani FN, Muchtaridi. Aspek kimia medisinal senyawa xanton sebagai anti kanker. Farmaka. 2016; 14(2):345-358.

Patrick M, Zohdi WNWM, Muid SA, Omar E. Alphamangostin (Garcinia mangostana Linn.) and its potential application in mitigating chronic wound healing. Malays. Appl. Biol. 2022; 51(2):1–8. Doi.org/10.55230/mabjournal.v51i2.2227

Al-Massarani SM, El Gamal AA, Al-Musayeib NM, Mothana RA, Basudan OA, Al-Rehaily AJ, Farag M, Assaf MH, Tahir KHE, Maes L. Phytochemical, antimicrobial and antiprotozoal evaluation of Garcinia mangostana pericarp and α-mangostin, its major xanthone derivative. Molecules. 2013; 18(9): 10599–10608. Doi:10.3390/molecules180910599

Obolskiy D, Pischel I, Siriwatanametanon N, Heinrich M. Garcinia mangostana L.: A phytochemical and pharmacological review. Phytother Res. 2009; 23:1047–1065. Doi: 10.1002/ptr.2730

Putri IP. Effectivity of xanthone of mangosteen (Garcinia mangostana L.) rind as anticancer. J Major. 2015; 4(1):33-38.

Pedraza-chaverri J, Cárdenas-rodríguez N, Orozco-ibarra M, Pérez-rojas JM. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol. 2008. 46(10):227–239. Doi:10.1016/j.fct.2008.07.024

Anam K, Munandar R, Wulandari ON, Lestari AB, Farada RE, Hudiyanti D, Aminin ALN. Chemical composition, antioxidant activities, and total phenolic content of combination of mangosteen (Garcinia mangostana L.) peelkodavan (Centella asiatica L. Urban) fractions. Trop J Nat

Prod Res. 2023; 7(1):2222-2228. http://www.doi.org/10.26538/tjnpr/v7i1.20

Brain D, Plant-Hately A, Heaton B, Arshad U, David C, Hedrich C, Owen A, Liptrott NJ. Drug delivery systems as immunomodulators for therapy of infectious disease: Relevance to COVID-19. Adv. Drug Deliv. Rev. 2021;178. doi: https://doi.org/10.1016/j.addr.2021.113848

Grimaldi N, Andrade F, Segovia N, Ferrer-Tasies L, Sala S, Veciana J, Ventosa N. Lipid-based nanovesicles for nanomedicine. Chem. Soc. Rev. 2016; 45(23):6520–6545.Doi: 10.1039/c6cs00409a

Hudiyanti D, Al Khafiz MF, Anam K, Siahaan P, Suyati L. Assessing encapsulation of curcumin in cocoliposome: In vitro study. Open Chem. 2021; 19(1):358–366. Doi: 10.1515/chem-2021-0036

Lujan H, Griffin WC, Taube JH, Sayes CM. Synthesis and characterization of nanometer-sized liposomes for encapsulation and microrna transfer to breast cancer cells. Int. J. Nanomedicine. 2019; 14: 5159–5173. http://doi.org/10.2147/IJN.S203330

Phan TKT, Tran TQ, Pham DTN, Nguyen DT. Characterization, release pattern, and cytotoxicity of liposomes loaded with α-mangostin isolated from pericarp of mangosteen (Garcinia mangostana L.). Nat. Prod. Commun. 2020; 15(11):1-8.

Esposto BS, Jauregi P, Tapia-Blácido DR, Martelli-Tosi M. Liposomes vs. chitosomes: Encapsulating food bioactives. Trends Food Sci. Technol. 2021; 108:40–48. https://doi.org/10.1016/j.tifs.2020.12.003

Al‐amin MD, Bellato F, Mastrotto F, Garofalo M, Malfanti A, Salmaso S, Caliceti P. Dexamethasone loaded liposomes by thin‐film hydration and microfluidic procedures: Formulation challenges. Int. J. Mol. Sci. 2020; 21(5):2-20. doi:10.3390/ijms21051611

Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021; 601:4-15.https://doi.org/10.1016/j.ijpharm.2021.120571

Hudiyanti D, Al-Khafiz MF, Anam K. Encapsulation of cinnamic acid and galangal extracts in coconut (Cocos nucifera L.) liposomes. J. Phys.: Conf. Ser. 2020;1-6. doi:10.1088/1742-6596/1442/1/012056

Verawaty, Halim A, Febriyenti. Efektivitas sistem penghantaran liposom pada katekin sebagai antioksidan. J. Sains Farm. Klin. 2016; 2(2):176–182.

Arham NA, Mohamad NAN, Jai J, Krishnan J, Yusof NM. Application of response surface methodology in extraction of bioactive component from palm leaves (Elaeis guineensis). Int. J. Sci. Eng.. 2013; 5(2):95–100. Doi: 10.12777/ijse.5.2.95-100

Sarah M, Madinah I, Salamah S. Response surface methodology to optimize microwave sterilization of palm fruit. J. Phys.: Conf. Ser. 2018; 1028(1).1-7. Doi :10.1088/1742-6596/1028/1/012004

Ratnawati SE, Ekantari N, Pradipta RW, Paramita BL. Aplikasi response surface methodology (RSM) pada optimasi ekstraksi kalsium tulang lele. J. Perikan. Univ. Gadjah Mada. 2018; 20(1):41–48.

Wang DY, van der Mei HC, Ren Y, Busscher HJ, Shi L. Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front. Chem. 2020; 7(1):1–15. doi: 10.3389/fchem.2019.00872

Yoshida A, Manosroi A, Manosroi J, Yamauchi H, Abe M. Molucular interaction between phospholipids and mangostin in a lipid bilayer. Colloids Surfaces B Biointerfaces. 1995; 4:423-432

Shashi K, Satinder K, Bharat P. A complete review on: liposomes. IRJP. 2012; 3(7):10-16.