Antimalarial Activity of Crude Bark Extract of Pterocarpus indicus Willd. against Plasmodium falciparum Strain 3D7 http://www.doi.org/10.26538/tjnpr/v7i9.6

Main Article Content

Diana Retnosari
Hery Purnobasuki
Agus Supriyanto

Abstract

Malaria is a global concern, particularly in tropical regions. Numerous studies have been conducted on plants with antimalarial potential. This study aimed to establish the half-maximal inhibitory concentration (IC50) of Pterocarpus indicus Willd. bark extract against Plasmodium falciparum strain 3D7. The extract was prepared by macerating the stem bark in three solvents (ethanol, ethyl acetate, and n-hexane). The antimalarial tests were performed using infected human erythrocytes. The Trager and Jensen method was used to culture P. falciparum parasites in vitro. A thin blood smear was prepared using 20% Giemsa dye to study parasite proliferation. Antimalarial activity tests were conducted on parasite cultures with 5% hematocrit and 1% parasitemia. The results revealed that the IC50 values of n-hexane, ethyl acetate, and 96% ethanol extracts were 7.14, 4.0, and 0.65 g/mL, respectively, indicating strong antimalarial activity. Alkaloids, flavonoids, tannins, phenols, and terpenoids are a few of the active chemical substances discovered in P. indicus Willd. Bark extract in this study. These findings suggest that the bark extract exhibits antimalarial properties even in the crude form. Thus, compounds isolated from P. indicus appear to be of particular importance for antimalarial research.

Downloads

Download data is not yet available.

Article Details

How to Cite
Retnosari, D., Purnobasuki, H., & Supriyanto, A. (2023). Antimalarial Activity of Crude Bark Extract of Pterocarpus indicus Willd. against Plasmodium falciparum Strain 3D7: http://www.doi.org/10.26538/tjnpr/v7i9.6. Tropical Journal of Natural Product Research (TJNPR), 7(9), 3893-3897. https://tjnpr.org/index.php/home/article/view/2590
Section
Articles
Author Biography

Hery Purnobasuki, Department of Biology, Faculty of Sciences and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia

Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga, Surabaya, East Java, Indonesia

How to Cite

Retnosari, D., Purnobasuki, H., & Supriyanto, A. (2023). Antimalarial Activity of Crude Bark Extract of Pterocarpus indicus Willd. against Plasmodium falciparum Strain 3D7: http://www.doi.org/10.26538/tjnpr/v7i9.6. Tropical Journal of Natural Product Research (TJNPR), 7(9), 3893-3897. https://tjnpr.org/index.php/home/article/view/2590

References

Kager PA. Malaria control: constraints and opportunities. Trop Med Int Health. 2002; 7(12): 1042-1046.

WHO. Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected diseases. World Health Organization, Geneva, Switzerland: WHO Press; 2015.

Pujara P, Parmar M, Rupakar P, Asawa K, Patel S. An introduction to tropical disease: a review article. Int J Med Microbiol Trop Dis. 2016; 2(3): 81-83

WHO. Malaria world report. World Health Organization, Geneva, Switzerland: WHO Press; 2019.

Awasthi G, Das AA. Genetics of chloroquine-resistant malaria: a haplotypic view. Memó Inst Oswaldo Cruz. 2013; 108(8): 947-961.

Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med. 2017; 23(8): 917-928.

Mulenga MC, Sitali L, Ciubotariu II, Hawela MB, Hamainza B, Chipeta J, Mharakurwa S. Decreased prevalence of the Plasmodium falciparum Pfcrt K76T and Pfmdr1 and N86Y mutations post-chloroquine treatment withdrawal in Katete District, Eastern Zambia. Malaria J. 2021; 20: 329.

Willcox ML, Bodeker G. Traditional herbal medicines for malaria. BMJ. 2004; 329(7475): 1156-1159.

Wahyuni DK, Wiwied E, Witono JR, Purnobasuki H. TOGA Indonesia. Surabaya: Airlangga University Press; 2016.

Anggono W, Sutrisno SFD, Suprianto FD, Evander J. Biomas briquette investigation from Pterocarpus indicus leaves waste as an alternative renewable energy. IOP Conf Ser Mater Sci Eng. 2017; 241(1): 012043.

Saivaraj S. Antimicrobial activity of natural dyes obtained from Pterocarpus indicus Wild. barks. Asian J Pharm Res Dev. 2018; 6(2): 6-8.

Krishnaveni KS, Rao JVS. An isoflavone from Pterocarpus santalinus. Phytochemistry. 2000; 53(5): 605-606.

Fatimah C, Harahap U, Sinaga I, Safrida E. Uji aktivitas antibakteri ekstrak daun angsana (Pterocarpus indicus Willd) secara in vitro. J Ilmiah Panmed. 2006; 1(1): 1-8.

Pribadi, W. Parasit malaria. Dalam: Gandahusada S, Ilahude HD, Pribadi W (Eds.). Parasitologi Kedokteran, edisi ketiga. Jakarta: Fakultas Kedokteran UI; 2000.171-197 p.

Manuel L, Zbynek B. Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains. Nucl Acid Res. 2006; 34(4): 1166-1173.

Newman DJ. Natural products as leads to potential drugs: an old process or the new hope for drug discovery?. J Med Chem. 2008; 51(9): 2589-2599.

Umar F, Mahajan RC. Drug resistance in malaria. J Vec Born Dis. 2004; 41: 45-53.

Karou D, Dicko MH, Sanon S, Simpore J, Traore AS. Antimalarial activity of Sida acuta Burm. f. (Malvaceae) and Pterocarpus erinaceus Poir. (Fabaceae). J Ethnopharmacol. 2003; 89(2-3): 291-294.

Hafid AF, Puliansari N, Lestaris NS, Tumewu L, Rahman A, Widyawaruyanti A. Skrining aktivitas antimalaria beberapa tanaman Indonesia hasil eksplorasi dari Hutan Raya Cangar, Batu Malang, Jawa Timur. J Farm Ilmu Kefarmasian Ind. 2016; 3(1): 6-11.

Vinori Y. Isolasi terpenoid dari kulit tumbuhan angsana (Pterocarpus indicus Willd). Padang: skripsi jurusan kimia. FMIPA. UNP; 2002.

Abouelela ME, Abdelhamid RA, Orabi MAA. Phytochemical constituents of plant species of Pterocarpus (F: Leguminosae): a review. Int J Pharmacogn Phytochem Res. 2019; 11(4): 264-281.

Senthilkumar N, Shalini TB, Lenora LM, Divya G. Pterocarpus indicus Willd: a lesser known tree species of medicinal importance. Asian J Res Bot. 2020; 3(4): 20-32.

Li T, Glushakova S, Zimmerberg J. A new method for culturing Plasmodium falciparum shows replication at the highest erythrocyte densities. J. Infec Dis. 2003; 187(1): 159-162.

Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa M, et al. In vitro antiplasmodial activity of medicinal plants native to or naturalized in South Africa. J Ethnopharmacol. 2003; 92: 177-191.

Uchenna BA, Abdullahi M, Yusuf KA, Olofu OE. Antimalarial activity of crude extract and fractions of Phyllanthus amarus in Plasmodium berghei infected mice. Eur J Med Plants. 2018; 24: 1-11.

Nwonuma CO, Balogun EA, Gyebi GA. Evaluation of antimalarial activity of ethanolic extract of Annona muricata L.: an in vivo and an in silico Approach. J Evid Based Integr Med. 2023. 28: 2515690X231165104.

Nardos A, Makonnen E. In vivo antiplasmodial activity and toxicological assessment of hydroethanolic crude extract of Ajuga remota. Malaria J. 2017; 16(1): 25.

Hailesilase GG, Rajeshwar Y, Hailu GS, Sibhat GG, Bitew H. In vivo antimalarial evaluation of crude extract, solvent fractions, and TLC-isolated compounds from Olea europaea Linn subsp. cuspidata (Oleaceae). Evid Based Complement Alter Med. 2020: article ID 6731485.

Abarca-Vargas R, Malacara CFP, Petricevich VL. Characterization of chemical compounds with antioxidant and cytotoxic activities in Bougainvillea x buttiana Holttum and Standl, (var. rose) extracts. Antioxidants (Basel). 2016; 5(45): 1-11.

Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel). 2017; 6(4): 1-23.

Abdussalam US, Allyu M, Maje IM. In vivo antiplasmodial activity of ethanol leaf extract of Marrubium vulgare L. (Lamiaceae) in Plasmodium berghei-berghei infected mice. Trop J Nat Prod Res. 2018; 2(3): 132-135.

Batista R, Silva AJS, de Oliveira AB. Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules. 2009; 14(8): 3037-3072.

Truong DH, Nguyen DH, Ta NTA, Bui AV, Do TH, Nguyen HC. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro antiinflammatory activities of Severinia buxifolia. J Food Qua. 2019; 2019: article ID 8178294.

Tajuddeen N, Van Heerden FR. Antiplasmodial natural products: an update. Malaria J 2019; 18(1): 404.

WHO. World Health Report 2002. Geneva, Switzerland: WHO Press; 2002.

Kitua AY, Malebo HM. Malaria control in Africa and the role of traditional medicine. In: Willcox M, Bodeker G, Rasoanaivo P, Addae-Kyereme J (Eds.). Traditional Medicinal Plants and Malaria. (1st ed.). Boca Raton, FL, USA: CRC Press; 2004. 2-20.

de Ridder S. van der Kooy F, Verpoorte R. Artemisia annua as a self-reliant treatment for malaria in developing countries. J Ethnopharmacol. 2008; 120(3): 302-314.

Karunamoorthi K, Tsehaye E. Ethnomedicinal knowledge, belief and self-reported practice of local inhabitants on traditional antimalarial plants and phytotherapy. J Ethnopharmacol. 2012; 141(1): 143-150.

Karunamoorthi K, Tsehaye E. Ethnomedicinal knowledge, belief and self-reported practice of local inhabitants on traditional antimalarial plants and phytotherapy. J Ethnopharmacol. 2012; 141(1): 143-150.

Dharani N, Rukunga G, Abiy YA, Mbora A, Mwaura L, Dawson I, Jamnadass R. Common antimalarial trees and shrubs of east Africa. Nairobo, Kenya: World Agroforestry Centre and the Kenya Medical Research Institute; 2010.

Silva JRA, Ramos AS, Machado M, Moura DF, Neto Z, Canto-Cavalheiro, MM, Figueiredo P, do Rosário, VE, Amaral ACF, Lopes D. A review of antimalarial plants used in traditional medicine in communities in Portuguesespeaking countries: Brazil, Mozambique, Cape Verde,Guinea-Bissau, São Tomé, and Príncipe and Angola. Memó Inst Oswal Cruz. 2011; 106 (Suppl 1): 142-158.

Lou J, Yu Y, Dai F. Laboratory test for diagnosis of parasitic diseases. Rad Parasit Dis. 8: 25-46.

Satyajit DS, Zahid L, Alexander IG. Natural Product Isolation. Totowa, New Jersey, USA: Humana Press; 2006.

Ogbeide OK, Dickson VO, Jebba RD, Owhiroro DA, Olaoluwa MO, Imieje VO, Erharuyi O, Owolabi BJ, Fasinu PS, Falodun A. Antiplasmodial and acute toxicity studies of fractions and cassane-type diterpenoids from the stem bark of Caesalpinia pulcherrima (L.) Sw. Trop J Nat Prod Res. 2018; 2(4): 179-184.