In Silico Identification of Potential Allosteric Inhibitors of the SARS-CoV-2 Helicase doi.org/10.26538/tjnpr/v5i1.22
Main Article Content
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic ravages the globe causing unprecedented health and economic challenges. As the world prospects for a cure, scientists are looking critically at strategic protein targets within the SARS-CoV-2 that have therapeutic significance. The Helicase is one of such targets and it is an enzyme that affects all facets of the SARS-CoV-2 RNA metabolism. This study is aimed at identifying small molecules from natural products that have strong binding affinity with and exhibit inhibitory activity against an allosteric site (Pocket 26) on the SARS-CoV-2 Helicase. The molecular docking simulations of SARS-CoV-2 Helicase (QHD43415-12.pdb) against a library of small molecules obtained from edible African plants was executed using PyRx. Triphenylmethane, which had a docking score of -7.4 kcal/mol on SARS CoV-2 Helicase was chosen as a reference compound. Based on the molecular descriptors of the compounds as provided by PubChem, a virtual screening for oral bioavailability was performed. Further screening for molar refractivity, pharmacokinetic properties, and bioactivity were performed using SwissADME, pkCSM, and Molinspiration webservers respectively. Molecular dynamic simulation and analyses were performed using the Galaxy webserver which uses the GROMACS software. The lead compounds are Gibberellin A12, A20, and A51 obtained from Green peas and the Okra plant. Gibberellin A20 and A51 were predicted to perform better than the standard and Gibberellin A51 showed the greatest inhibitory activity against SARS-CoV-2 Helicase.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
World Health Organization. Coronavirus disease (COVID-19) situation report – 86. [Online]. 2020 [cited 2020 April 15]. Available from: https://www.who.int/docs/defaultsource/coronaviruse/situation-reports/20200415-sitrep-86-covid-19.pdf?sfvrsn=c615ea20_6, 2020.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu, Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223):497-506.
Hazafa A, ur-Rahman K, Haq I, Jahan N, Mumtaz M, Farman M, Naeem H, Abbas F, Naeem M, Sadiqa S, Banob S. The broad-spectrum antiviral recommendations for drug discovery against COVID-19. Drug Metab Rev. 2020; 52(3):408-424.
Bajwah S, Wilcock A, Towers R, Costantini M, Bausewein C, Simon ST, Bendstrup E, Prentice W, Johnson MJ, Currow DC, Kreuter M, Wells AU, Birring SS, Edmonds P, Higginson IJ. Managing the supportive care needs of those affected by COVID-19. Eur Respir J. 2020; 55(4):2000815.
Liu S, Shen J, Fang S, Li K, Liu J, Yang L, Hu CD, Wan J. Genetic Spectrum and Distinct Evolution Patterns of SARSCoV-2. Front Microbiol. 2020; 11:593548.
Murphy K. SARS CoV-2 Detection from Upper and Lower Respiratory Tract Specimens Diagnostic and Infection Control Implications. Chest. 2020; 158(5):1804-1805.
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020; 92(4):418-423.
Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H, Bansal S, Medhi B.Drug targets for corona virus: A systematic review. Indian J Pharmacol. 2020; 52(1):56-65.
Singhal TA. Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr 2020; 87:281-286.
Burrell CJ, Howard CR, Murphy FA. Coronaviruses. Fenner and White's Medical Virology. 2017; 437-446.
Satarker S and Nampoothiri M. Structural Proteins in Severe Acute Respiratory Syndrome Coronavirus-2. Arch Med Res. 2020; 51(6):482491.
Bosch BJ, van der Zee R, de Haan, CAM, Rottier PJM. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003; 77(16):8801-8811.
Fung TS and Liu DX. Human Coronavirus: Host-Pathogen Interaction. Annu Rev Microbiol 2019; 73:529-557.
Brosh Jr RM and Matson SW. History of DNA Helicases. Genes 2020; 11(3):255.
Ren X, Yu Y, Li H, Huang J, Zhou A, Liu S, Hu P, Li B, Qi W, Liao M. Avian Influenza A Virus Polymerase Recruits Cellular RNA Helicase eIF4A3 to Promote Viral mRNA Splicing and Spliced mRNA Nuclear Export. Front Microbiol. 2019; 10:1625.
Bourgeois C, Mortreux F, Auboeuf D. The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat Rev Mol Cell Biol 2016; 17:426-438.
Crute JJ, Grygon CA, Hargrave KD, Simoneau B, Faucher AM, Bolger G, Kibler P, Liuzzi M, Cordingley MG. Herpes simplex virus helicase-primase inhibitors are active in animal models of human disease. Nat Med. 2002; 8(4):386-391.
Mirza MU and Froeyen M. Structural elucidation of SARSCoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J Pharm Anal. 2020; 10(4):320-328.
Jia Z, Liming Y, Ren Z, Wu L, Wang J, Guo J, Zheng L, Ming Z, Zhang L, Lou Z, Rao Z. Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res 2019; 47(12):6538-6550.
Samatanga B, Andreou AZ, Klostermeier D. Allosteric regulation of helicase core activities of the DEAD-box helicase YxiN by RNA binding to its RNA recognition motif. Nucleic Acids Res. 2017; 45(4):1994-2006.
Habtemariam S, Nabavi SF, Banach M, Berindan-Neagoe I, Sarkar K, Sil PC, Nabavi SM. Should We Try SARS-CoV-2 Helicase Inhibitors for COVID-19 Therapy? Arch Med Res. 2020; 51(7):733-735.
Frediansyah A, Tiwari R, Sharun K, Dhama K, Harapan H. Antivirals for COVID-19: A critical review. Clinical Epidemiology and Global Health 2020.
Sayed AM, Khatta AR, AboulMag AM, Hassan HM, Rate ME, Zaidg H, Abdelmohsen UR. Nature as a treasure trove of potential anti-SARS-CoV drug leads: a structural/mechanistic rationale. RSC Adv. 2020; 10:19790-19802.
Lee J, Cho J, Ahn H, Jung W, Jeong Y. A Novel Chemical Compound for Inhibition of SARS Coronavirus Helicase. J Microbiol Biotechnol. 2017; 27(11):2070-2073.
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M, Chen L, Li H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020; 10(5):766-788.
Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5(4):725-738.
Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB 3rd, Snoeyink J, Richardson JS, Richardson DC. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007; 35(Web Server Issue): W375-83.
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2019 update: improved access to chemical data. Nucleic Acids Re. 2019; 47(D1):D1102-D1109.
Atatreh N, Al Rawashdah S, Al Neyadi SS, Abuhamdah SM, Ghattas MA. Discovery of new butyrylcholinesterase inhibitors via structure-based virtual screening. J Enzyme Inhib Med Chem. 2019; 34(1):1373-1379.
Dallakyan S and Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015; 1263:243-250.
Trott O and Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2):455-461.
Pires DEV, Tom L, Blundell DB, Ascher. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem 2015; 58(9):4066-4072.
Daina A, Olivier M, Vincent Z. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7:42717.
Molinspiration. Calculation of molecular properties and bioactivity score. [Online]. 2020 [Cited 2020 May]. Available from: https://www.molinspiration.com/cgibin/properties.
DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr. 2002; 40:82-92.
Salentin S, Schreiber S, Haupt VJ, Adasme M.F, Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015; 43(W1):W443-447.
Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: An opensource platform for ligand pocket detection. BMC Bioinformatics. 2009; 10:168.
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015; 1-2:19-25.
Dodda LS, Cabeza de Vaca I, Tirado-Rives J, Jorgensen WL. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 2017; 45(W1):W331-W336.
Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016; 44(W1):W3-W10.
Macalino SJY, Billones JB, Organo VG, Carrillo MCO. In Silico Strategies in Tuberculosis Drug Discovery. Molecules 2020; 25(3):665.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001; 46(1-3):3-26.
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002; 45(12):2615-2623.
Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1999; 1(1):55-68.
Cambridge MedChem Consulting. Brain Penetration (a work in progress) [Online] 2019. [cited 2020 Dec 02]. Available from:
https://www.cambridgemedchemconsulting.com/resources/ADME/brian_penetration.html
Saddala SM, Lennikov A, Huang H. Discovery of SmallMolecule Activators for Glucose-6-Phosphate Dehydrogenase (G6PD) Using Machine Learning Approaches. Int J Mol Sci. 2020; 21:1523.
Capuzzi SJ, Muratov EN, Tropsha A. Phantom PAINS: Problems with the Utility of Alerts for Pan-Assay Interference Compounds. J Chem Inf Model. 2017; 57(3): 417-427.
Khan T, Dixit S, Ahmad R, Raza S, Azad I, Joshi S, Khan AR. Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its complexes. J Chem Biol.
; 10(3):91-104.
Kesharwani RK, Vishwakarma VK, Keservani RK, Singh P, Katiyar N, Tripathi S. Role of ADMET Tools in Current Scenario: Application and Limitations. In: Singh DB (Ed.). Computer-Aided Drug Design. Singapore: Springer. 2020.71-87 p.
Savjani KT, Gajjar AJ, Savjani KJ. Drug solubility: importance and enhancement techniques. ISRN Pharm 2012; 2012:195727.
Zhou SF. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. 2008; 4(9):310-322.
Hacker K, Maas R, Kornhuber J, Fromm M.F, Zolk O. Substrate-Dependent Inhibition of the Human Organic Cation Transporter OCT2: A Comparison of Metformin with Experimental Substrates. PLoS One 2015; 10(9):e0136451.
Freire E. A thermodynamic approach to the affinity optimization of drug candidates. Chem Biol Drug Des. 2009; 74(5):468-472.
Jensen JH. Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods. Phys Chem Chem Phys. 2015; 17(19):12441-12451.
Natarajan A, Schwans JP, Herschlag D. Using unnatural amino acids to probe the energetics of oxyanion hole hydrogen bonds in the ketosteroid isomerase active site. J Am Chem Soc. 2014; 136(21):7643-7654.
Taylor MS and Jacobsen EN. Asymmetric Catalysis by Chiral Hydrogen-Bond Donors. Angew Chemie Int. 2016; 45(10):1520-1543.
Salentin S, Haupt VJ, Daminelli S, Schroeder M. Polypharmacology rescored: protein-ligand interaction profiles for remote binding site similarity assessment. Prog Biophys Mol Biol. 2014; 116(2-3):174-186.
Sarkar A and Kellogg GE. Hydrophobicity-shake flasks, protein folding and drug discovery. Curr Top Med Chem. 2010; 10(1):67-83.
Jeffrey GA. An Introduction to Hydrogen Bonding. Oxford: Oxford University Press; 1997.
Desiraju G and Steiner T. The Weak Hydrogen Bond. In Structural Chemistry and Biology. Oxford: Oxford University Press; 2001.
Kumar S and Nussinov R. Close-range electrostatic interactions in proteins. Chembiochem. 2002; 3(7):604-617.
Kenny PW. The nature of ligand efficiency. J Cheminform. 2019; 11(1):8.
Kufareva I and Abagyan R. Methods of protein structure comparison. Methods Mol Biol. 2012; 857:231-257.
Stockner T, Vogel HJ, Peter Tieleman D. A salt-bridge motif involved in ligand binding and large-scale domain motions of the maltose-binding protein. Biophys J. 2005; 89(5):3362-3371.
Krzysztof K, Gouri SJ, Ron E. Kinetics of helix unfolding: molecular dynamics simulations with milestoning. J Phys Chem A. 2009; 113(26):7461-7473.
Rajesh D. Re: What is the importance of the RMSD value in molecular docking? [Online]. 2015 [Cited 2020 May 28]. Available from:
Gürsoy O and Smieško M. Searching for bioactive conformations of drug-like ligands with current force fields: how good are we? J Cheminform. 2017; 9(1):29.
Fuglebakk E, Echave J, Reuter N. Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics 2012; 28(19):2431-2440.
David CC and Jacobs DJ. Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol Biol. 2014; 1084:193-226.
Sawle L, Ghosh K. Convergence of Molecular Dynamics Simulation of Protein Native States: Feasibility vs SelfConsistency Dilemma. J Chem Theory Comput. 2016; 12(2):861-869.
Upadhyay SK. Dynamics of Gal80p in the Gal80p–Gal3p complex differ significantly from the dynamics in the Gal80p–Gal1p complex: implications for the higher specificity of Gal3p. Mol Biosyst. 2014; 10(12):3120-3129.
Kasahara K, Fukuda I, Nakamura H. A Novel Approach of Dynamic Cross Correlation Analysis on Molecular Dynamics Simulations and Its Application to Ets1 Dimer–DNA Complex. PLoS One 2014; 9(11):e112419.
Vidhyasekaran P. Gibberellin Signaling in Plant Innate Immunity. In Plant Hormone Signalling. Systems in Plant Innate Immunity. Netherlands: Springer; 2015. 383-401 p.
Smith VA. Gibberellin A1 Biosynthesis in Pisum sativum L.: II. Biological and Biochemical Consequences of the le Mutation. Plant Physiol. 1992; 99(2):372-377.
Bailiss KW. The relationship of gibberellin content to cucumber mosaic virus infection of cucumber. Physiol Plant Pathol. 1974; 4:73-79.
Rowaiye AB, Olubiyi J, Bur D, Uzochukwu IC, Akpa A, Esimone CO. In silico screening and molecular dynamic simulation studies of potential small molecule immunomodulators of the KIR2DS2 receptor. BioRxiv. 2020; 2020(05-10)087148.
De Bruyne L, Höfte M, De Vleesschauwer D. Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant. 2014; 7(6):943-959.