Evaluation of α-Amylase Inhibitory Activity of Saponins from Panax bipinnatifidus Seem. Growing in Vietnam http://www.doi.org/10.26538/tjnpr/v7i8.27
Main Article Content
Abstract
α-Amylase inhibitors represent a drug target for lowering postprandial hyperglycemia in diabetic patients. According to traditional medicines, Panax plants have been utilised to treat diabetes and considered as a valuable source to develop anti-diabetic supplementary products. The current study aimed to evaluate the α-amylase inhibitory activities of Panax bipinnatifidus root cultivated
in Vietnam and its main chemical constituents. The two major saponins, Araloside A and Stipuleanoside R2 were confirmed by ultra performance liquid chromatography quadruple-time of flight-mass spectrometry (UPLCQ-TOF/MS) and nuclear magnetic resonance (NMR). Then, the results indicated that Araloside A and Stipuleanoside R2, were shown to moderately inhibit the α-amylase activity in an enzymatic assay with IC50 values of 781.46 and 2746.90 μg/mL, respectively. Moreover, Araloside A (Vmax ~ 0.0635 µM/min, Km ~ 4.691 µM) was displayed as a completive inhibitor of α-amylase in the kinetic study whereas Acarbose (Vmax ~ 0.053 µM/min, Km ~ 6.521 µM) showed a mixed inhibition. This study suggested the posibility of Araloside A acting as an α-amylase inhibitor. Also, it supports the traditional use of P. bipinnatifidus in antidiabetic dietary.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: Global, regional, and country-level
diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183: 109119.
Ngoc NB, Lin ZL, Ahmed W. Diabetes: What challenges lie ahead for Vietnam? Ann Glob Health. 2020; 86(1):1.
Fite RF, Genzano CB, Mallone R, Creusot RJ. Epitope-based precision immunotherapy of Type 1 diabetes. Hum Vaccin Immunother. 2023; 19(1):2154098.
Sithara S, Crowley T, Walder K, Aston-Mourney K. Identification of reversible and druggable pathways to improve beta-cell function and survival in type 2 diabetes. Islets. 2023; 15(1): 2165368.
Gong L, Feng D, Wang T, Ren Y, Liu Y, Wang J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci Nutr. 2020; 8(12): 6320-6337.
Gachons CP, Breslin PA. Salivary amylase: digestion and metabolic syndrome. Curr Diab Rep. 2016; 16(10): 102.
Juang YP, Liang PH. Biological and pharmacological effects of synthetic saponins. Molecules. 2020; 25(21): 4974.
Gitanjali J, Dinesh Ram DS, R K, Amalan V, Alahmadi TA, Alharbi SA, Kandasamy S, Shanmuganthan R, Vijayakumar N. Antimicrobial, antioxidant, anticancer, and antithrombotic, competency of saponins from the root of Decalepis hamiltonii. Environ Res. 2023; 231(Pt 1): 116096.
Vu DD, Nguyen MT, Nguyen MD, Nguyen PLH, Bui TTX, Phan KL, Vu DG, Pham QT, Nguyen TPT. Genetic population structure of the Vietnamese ginseng (Panax vietnamensis Ha et Grushv.) detected by microsatellite analysis. Braz J Biol. 2022; 84: e264369.
Thom VT, Tung NH, Van Diep D, Thuy DT, Hue NT, Long DD, Tung BT, Huyen PT, Huong DTL. Antithrombotic activity and saponin composition of the roots of Panax bipinnatifidus Seem. Growing in Vietnam. Pharmacognosy Res. 2018; 10(4):333-338.
Le HTT, Nguyen LN, Pham HLB, Le HTM, Luong TD, Huynh HTT, Nguyen VT, Nong HV, Teixidor-Toneu I, De Boer HJ, Manzanilla V. Target capture reveals the complex origin of Vietnamese Ginseng. Front Plant Sci. 2022; 13: 814178.
Nguyen HT, Tran HQ, Nguyen TT, Chau VM, Bui KA, Pham QL, Nguyen MC, Kim YH. Oleanolic triterpene saponins from the roots of Panax bipinnatifidus. Chem Pharm Bull (Tokyo). 2011; 59(11): 1417-1420.
Dang TN, Van BTT, Ha TTN, Hoa NM, Thao CTP, Nhung NTH, Huong DTL, Anh NTH, Tung NH, Hoang VD. Saponin composition analysis of the Aerial Part of Panax Bipinnatifidus Seem. Collected in Sa Pa, Lao Cai. VNU JS: MPS. 2019; 35: 1.
Gurung B, Bhardwaj PK, Rai AK, Sahoo D. Major ginsenoside contents in rhizomes of Panax sokpayensis and Panax bipinnatifidus. Nat Prod Res. 2018; 32(2): 234-238.
Kiem PV, Hoang VD, Anh NTH, Anh DTP, Trang DT, Tai BH. Panabipinoside A and panabipinoside B, two new oleanane triterpenoid saponins from the roots of Panax bipinnatifidus with nitric oxide inhibitory activity. J Chem Res. 2021; 45(9-10): 850 - 855.
Sudha P, Zinjarde SS, Bhargava SY, Kumar AR. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement Altern Med. 2011; 11: 5.
Yang J, Li H, Wang X, Zhang C, Feng G, Peng X. Inhibition mechanism of α-amylase/α-glucosidase by silibinin, Its synergism with acarbose, and the effect of milk proteins. J Agric Food Chem. 2021; 69(36): 10515-10526.
Liang C, Ding Y, Nguyen HT, Kim JA, Boo HJ, Kang HK, Nguyen MC, Kim YH. Oleanane-type triterpenoids from Panax stipuleanatus and their anticancer activities. Bioorg Med Chem Lett. 2010; 20(23): 7110-7115.
Tamil IG, Dineshkumar B, Nandhakumar M, Senthilkumar M, Mitra A. In vitro study on α-amylase inhibitory activity of an Indian medicinal plant, Phyllanthus amarus. Indian J Pharmacol. 2010; 42(5): 280-282.
Visvanathan R, Qader M, Jayathilake C, Jayawardana BC, Liyanage R, Sivakanesan R. Critical review on conventional spectroscopic α-amylase activity detection methods: merits, demerits, and future prospects. J Sci Food Agric. 2020; 100(7): 2836-2847.
Hanh TTH, Dang NH, Dat NT. α-amylase and α-glucosidase inhibitory saponins from Polyscias fruticosa leaves. J Chem. 2016; https://doi.org/10.1155/2016/2082946.
Ahmed MU, Ibrahim A, Dahiru NJ, Mohammed HS. Alpha amylase inhibitory potential and mode of inhibition of Oils from Allium sativum (Garlic) and Allium cepa (Onion). Clin Med Insights Endocrinol Diabetes. 2020; 13: 1179551420963106.
Khadayat K, Marasini BP, Gautam H, Ghaju S, Parajuli N. Evaluation of the alpha-amylase inhibitory activity of Nepalese medicinal plants used in the treatment of diabetes mellitus. Clin Phytoscience. 2020; 6: 34.
Deng XY, Ke JJ, Zheng YY, Li DL, Zhang K, Zheng X, Wu JY, Xiong Z, Wu PP, Xu XT. Synthesis and bioactivities evaluation of oleanolic acid oxime ester derivatives as α-glucosidase and α-amylase inhibitors. J Enzyme Inhib Med Chem. 2022;37(1):451-461.
Yoon SH, Robyt JF. Study of the inhibition of four alpha amylases by acarbose and its 4IV-alpha-maltohexaosyl and 4IV-alpha-maltododecaosyl analogues. Carbohydr Res. 2003; 338(19):1969-1980.
Yang J, Li H, Wang X, Zhang C, Feng G, Peng X. Inhibition mechanism of α-amylase/α-glucosidase by silibinin, Its synergism with acarbose, and the effect of milk proteins. J Agric Food Chem. 2021; 69(36): 10515-10526.
Kicel A, Magiera A, Skrzywanek M, Malczuk M, Olszewska MA. The inhibition of α-glucosidase, α-amylase and protein glycation by phenolic extracts of Cotoneaster bullatus, Cotoneaster zabelii, and Cotoneaster integerrimus leaves and fruits: focus on anti-hyperglycemic activity and kinetic parameters. Molecules. 2022; 27(20):7081.