Multicomponent Crystals of Piperine-Nicotinic Acid: The Physicochemical and Dissolution Rate Properties


  • Maria D. Octavia Doctoral Program, Graduate School of Biomedical Sciences, Faculty of Medicine, Andalas University, Padang, 25129, West Sumatera, Indonesia
  • Hasmiwati Hasmiwati Department of Parasitology, Faculty of Medicine, Andalas University, Padang, 25129, West Sumatra, Indonesia
  • Gusti Revilla Department of Anatomy, Faculty of Medicine, Andalas University, Padang, 25163, West Sumatra, Indonesia
  • Erizal Zaini Department of Pharmaceutics, Faculty of Pharmacy, Andalas University, Padang, 25163, West Sumatera, Indonesia


solvent-drop grinding, dissolution profile, nicotinic acid, piperine, multicomponent crystal


Piperine is included in Class II of the Biopharmaceutical Classification System. Piperine has low solubility in water, resulting in low bioavailability. To improve the physicochemical properties and increase the dissolution rate of piperine, multicomponent crystals were prepared by solventdrop grinding, using ethanol pa with the addition of nicotinic acid as a coformer. The formation of multicomponent crystals was achieved by varying the mole ratios in the formulas (F): F1 (1:1), F2 (2:1), and F3 (1:2). The multicomponent crystals were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), solubility tests, and dissolution profiles using a type II paddle. The XRD patterns showed a decrease in the intensity of the multicomponent crystal formula compared to piperine and the physical mixture. The DSC thermograms showed a decrease in endothermic peaks and enthalpy values. The FTIR spectra confirmed that there was no chemical interaction between piperine and nicotinic acid. SEM analyses showed the formation of new crystal habits. The solubility tests and dissolution profiles showed a significant increase in the amount of solute from the crystalline multicomponent formula compared to intact piperine and the physical mixture. Therefore, the multicomponent piperine-nicotinic acid crystals can improve the physicochemical properties and increase the dissolution rate of piperine. 

Author Biography

Maria D. Octavia, Doctoral Program, Graduate School of Biomedical Sciences, Faculty of Medicine, Andalas University, Padang, 25129, West Sumatera, Indonesia

School of Pharmaceutical Science (STIFARM), Padang, 25147, West Sumatra, Indonesia


Zaini E, Riska D, Oktavia MD, Ismed F, Fitriani L. Improving dissolution rate of piperine by multicomponent crystal formation with saccharin. Res J Pharm Tech. 2020; 13(4):1926–1930.

Vasavirama K, Upender M. Piperine: A valuable alkaloid from piper species. Int J Pharm Pharm Sci. 2014; 6(4):34–38.

Pachauri M, Gupta ED, Ghosh PC. Piperine loaded PEGPLGA nanoparticles: Preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy. J Drug Del Sci Tech. 2015; 29:269–282.

Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000; 44(1):235–249.

Savjani KT, Gajjar AK, Savjani JK. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012; 2012:1–10.

Pouton CW. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci (2006); 29:278–287.

Takagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX, Amidon GL. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol Pharm. 2006; 3(6):631–643.

Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter, CJH. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013; 65(1):315–499.

Grothe E, Meekes H, Vlieg E, Ter Horst JH, De Gelder R. Solvates, Salts, and Cocrystals: A Proposal for a Feasible Classification System. Crys Growth Des. 2016; 16(6):3237–3243.

Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical co-crystals. J Pharm Sci. 2006; 95(3):499–516.

Steed JW. The role of co-crystals in pharmaceutical design. Trends Pharmacol Sci. 2013; 34(3):185–193.

Sekhon B. Pharmaceutical co-crystals - a review. Ars Pharm. 2009; 50(3):99–117.

Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, Desiraju GR, Dikundwar AG, Dubey R, Duggirala N, Ghogale PP, Ghosh S, Goswami PK, Goud NR, Jetti RRKR, Karpinski P, Kaushik P, Kumar D, Kumar V, Zaworotko MJ. Polymorphs, Salts, and Cocrystals:

What’s in a Name?. Crys Growth Des. 2012; 12(5):2147–2152.

Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ. Pharmaceutical cocrystals: Along the path to improved medicines. Chem Comm. 2016; 52(4):640–655.

Carlson LA. Nicotinic acid: The broad-spectrum lipid drug. A 50th anniversary review. J Intern Med. 2005; 258(2):94–114.

Brittain HG. Polymorphism in pharmaceutical solids. (2ndEd). New York: M. Dekker: 1999.

Gonçalves EM, Bernardes CES, Diogo HP, Minas Da Piedade ME. Energetics and structure of nicotinic acid (Niacin). J Physic Chem B. 2010; 114(16):5475–5485.

Zaini E, Afriyani, Fitriani L, Ismed F, Horikawa A, Uekusa H. Improved solubility and dissolution rates in novel multicomponent crystals of piperine with succinic acid. Sci Pharm. 2020; 88(2):1-12.

Jessica A, Naura R, Hasanah U, Zaini E, Fitriani L. Pembentukan Multikomponen Kristal Piperin Dan Kuersetin. J Pharm Sci. 2021; 4(2):1–11.

Yuliandra Y, Zaini E, Syofyan S, Pratiwi W, Putri L N, Pratiwi YS, Arifin H. Cocrystal of ibuprofen–nicotinamide: Solid-state characterization and in vivo analgesic activity evaluation. Sci Pharm. 2018; 86(2):1-11.

Octavia MD, Halim A, Zaini E. Preparation of Simvastatin- β-Cyclodextrin inclusion complexes using coevaporation technique. J Chem Pharm Res. 2015; 7(2):740–747.

Zaini E, Fitriani L, Sari RY, Rosaini H, Horikawa A, Uekusa H. Multicomponent Crystal of Mefenamic Acid and NMethyl-D-Glucamine: Crystal Structures and Dissolution Study. J Pharm Sci. 2019; 108(7):2341–2348.

Sari YN, Zaini E, Ismed F. Peningkatan laju disolusi piperine dengan pembentukan multikomponen kristal menggunakan asam nikotinat. J Sains Farm Klin. 2019 6(2):180-185.

Sathisaran I, Dalvi SV. Engineering cocrystals of poorlywater-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics. 2018; 10(3):58-74.

Zaini E, Sumirtapura YC, Halim A, Fitriani L, Soewandhi SN. Formation and characterization of sulfamethoxazoletrimethoprim cocrystal by milling process. J Appl Pharm Sci. 2017; 7(12):169–173.

Fitriani L, Afriyanti I, Afriyani, Ismed F, Zaini E. Solid dispersion of usnic acid–HPMC 2910 prepared by spray drying and freeze drying techniques. Orient J Chem. 2018; 34(4):2083–2088.

Bhusnure O, Kazi P, Gholve S. Solid Dispersion: an Ever Green Method for Solubility Enhancement of Poorly Water Soluble Drugs. Int J Res in Pharm Chem. 2014; 4(4):906–918.

Berry DJ, Steed JW. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv Drug Del Rev. 2017; 117:3–24.

Cherukuvada S, Row TNG. Comprehending the Formation of Eutectics and Cocrystals in Terms of Design and Their Structural Interrelationships. Crys Growth Des. 2014; 14:4187−4198.

Chi Z, Wang M, Yang L, Li X, Cong X, Liu S, Cai B. Fourier Transform Near-Infrared Spectroscopy Used for Purity Determination of Rhein-L-arginine Cocrystal (Argirein). Anal Sci, 2013; 29(6):661–664.

Ren T, Hu M, Cheng Y, Shek TL, Xiao M, Ho NJ, Zhang C, Leung SSY, Zuo Z. Piperine-loaded nanoparticles with enhanced dissolution and oral bioavailability for epilepsy control. Eur J Pharm Sci. 2019; 137:1-8.

Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S, Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K. Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment. J Anal Bioanal Tech. 2016; 6(5):1–5.



How to Cite

Octavia, M. D., Hasmiwati, H., Revilla, G., & Zaini, E. (2023). Multicomponent Crystals of Piperine-Nicotinic Acid: The Physicochemical and Dissolution Rate Properties: Tropical Journal of Natural Product Research (TJNPR), 7(8), 3701–3705. Retrieved from

Most read articles by the same author(s)