Cytotoxic Activity of Compounds from Vietnamese Goniothalamus elegans Ast

http://www.doi.org/10.26538/tjnpr/v7i7.31

Authors

  • Linh T. T. Tran Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue 530000, Vietnam
  • Tan K. Nguyen Scientific Management Department, Dong A University, 33 Xo Viet Nghe Tinh, Hai Chau district, Da Nang city 550000, Vietnam
  • Dao C. To Phenikaa University Nano Institute (PHENA), Phenikaa University, Yen Nghia, Ha Dong district, Hanoi 12116, Vietnam
  • Phu T.V. Pham Faculty of Medicine, Dong A University, 33 Xo Viet Nghe Tinh, Hai Chau, Danang 550000, Vietnam
  • Manh H. Tran School of Medicine and Pharmacy, The University of Danang, Hoa Quy, Ngu Hanh Son, Danang 550000, Vietnam
  • Tu T.T. Nguyen Faculty of Traditional Medicine, Hanoi Medical University, 01 Ton That Tung Street, Dong Da District, Hanoi 11500, Vietnam

Keywords:

aristolactam BII, cytotoxic activity, Annonaceae, Goniothalamus elegans

Abstract

Goniothalamus elegans Ast is a plant commonly used in traditional medicine for the treatment of heart disease and diarrhea. Although there has been one published study on its chemical composition, limited research has been conducted on its bioactivity. In this study, the aerial part of G. elegans was extracted using the soaking method and further subjected to column chromatography for isolation. The isolated compounds were then evaluated for cytotoxicity using SRB staining. From the aerial part of G. elegans, four compounds were successfully isolated and identified as (23R)-21,23-epoxy-5a-cycloart-24-en-3ß-ol (1), stigmasterol (2), aristolactam BII
(3), and piperolactam C (4). Among these compounds, aristolactam BII and piperolactam C exhibited moderate cytotoxicity against SW-489, AGS, LU-1, and HepG2 cell lines, with IC50 values ranging from 55.55 to 96.21 µg/mL. This study reveals that the phytochemical composition of G. elegans and demonstrates its potential cytotoxic activity, indicating promising avenues for
further exploration in future research endeavors. 

References

Mak TCW, Ee GCL, Chuah CH. 5ß-Hydroxygoniothalamin, a styrylpyrone derivative from Goniothalamvs dolichocarpus (Annonaceae). Nat Prod Lett. 1995;5(4):255–259.

Chi Van Vo. (2000). Dictionary of Vietnamese medicinal plants [in Vietnamese]. Medicine Publishing House, Hanoi, Vietnam.

Wiart C. Goniothalamus species: a source of drugs for the treatment of cancers and bacterial infections?. Evid BasedComplement Alternat Med. 2007;4(3):299-311.

Kim Y, Sengupta S, Sim T. Natural and synthetic lactones possessing antitumor activities. Int J Mol Sci. 2021;22(3);1052.

Fang XP, Anderson JE, Chang CJ, McLaughlin JL, Fanwick PE. Two new styryl lactones, 9-deoxygoniopypyrone and 7- epi-goniofufurone, from Goniothalamus giganteus. J Nat

Prod. 1991;54(4);1034-1043.

Alabsi AM, Ali R, Ali AM, Harun H, Al-Dubai SA, Ganasegeran K, Alshagga MA, Salem SD, Abu Kasim NH. Induction of caspase-9, biochemical assessment and

morphological changes caused by apoptosis in cancer cells treated with goniothalamin extracted from Goniothalamus macrophyllus. Asian Pac J Cancer Prev. 2013;14(11);6273-

Bihud NV, Rasol NE, Imran S, Awang K, Ahmad FB, Mai CW, Leong CO, Cordell GA, Ismail NH. Goniolanceolatins A-H, cytotoxic bis-styryllactones from Goniothalamus

lanceolatus. J Nat Prod. 2019;82(9);2430-2442.

Boonmuen N, Thongon N, Chairoungdua A, Suksen K, Pompimon W, Tuchinda P, Reutrakul V, Piyachaturawat P. 5-Acetyl goniothalamin suppresses proliferation of breast

cancer cells via Wnt/ß-catenin signaling. Eur J Pharmacol. 2016;791;455-464.

Chan KM, Rajab NF, Ishak MH, Ali AM, Yusoff K, Din LB, Inayat-Hussain SH. Goniothalamin induces apoptosis in vascular smooth muscle cells. Chem Biol Interact.

;159(2);129-40.

de Fátima A, Modolo LV, Conegero LS, Pilli RA, Ferreira CV, Kohn LK, de Carvalho JE. Styryl lactones and their derivatives: biological activities, mechanisms of action and

potential leads for drug design. Curr Med Chem. 2006;13(28);3371-3384.

Khaw-On P, Pompimon W, Banjerdpongchai R. Apoptosis induction via ATM phosphorylation, cell cycle arrest, and ER stress by goniothalamin and chemodrugs combined

effects on breast cancer-derived MDA-MB-231 cells. Biomed Res Int. 2018; 2018;7049053.

Teo SP, Bhakta S, Stapleton P, Gibbons S. Bioactive compounds from the Bornean endemic plant Goniothalamus longistipetes. Antibiotics (Basel). 2020;9(12);913.

Polbuppha I, Teerapongpisan P, Phukhatmuen P, Suthiphasilp V, Maneerat T, Charoensup R, Andersen RJ, Laphookhieo S. Alkaloids and styryl lactonesfrom Goniothalamus ridleyi King and their a-glucosidase

inhibitory activity. Molecules. 2023;28(3);1158.

Seyed MA, Jantan I, Bukhari SN. Emerging anticancer potentials of goniothalamin and its molecular mechanisms. Biomed Res Int. 2014;2014;536508.

Suchaichit, N., Kanokmedhakul, K., Panthama, N., Poopasit, K., Moosophon, P., & Kanokmedhakul, S. A 2Htetrahydropyran derivative and bioactive constituents from

the bark of Goniothalamus elegants Ast. Fitoterapia. 2015;103;206–212.

Sun L, Zhao R, Lan X, Chen R, Wang S, Du G. Goniolactone C, a styryl lactone derivative, inhibits PDGF-BB-induced cascular smooth muscle cell migration and proliferation via

PDGFR/ERK signaling. Molecules, 2014;19(12);19501.

Tantithanaporn S, Wattanapiromsakul C, Itharat A, Keawpradub N. Cytotoxic activity of acetogenins and styryl lactones isolated from Goniothalamus undulatus Ridl. root

extracts against a lung cancer cell line (COR-L23). Phytomedicine. 2011;18(6);486-490.

Jaidee W, Andersen RJ, Patrick BO, Pyne SG, Muanprasat C, Borwornpinyo S, Laphookhieo S. Alkaloids and styryllactones from Goniothalamus cheliensis.

Phytochemistry. 2019;157;8-20.

Lekphrom R, Kanokmedhakul S, Kanokmedhakul K. Bioactive styryllactones and alkaloid from flowers of Goniothalamus laoticus. J. Ethnopharmacol.

;125(1);47–50.

Tran LTT, Pham LHD, Dang NYT, Nguyen Le NT, Nguyen HB, Nguyen TK. Phytochemicals derived from Goniothalamus elegans Ast exhibit anticancer activity by

inhibiting epidermal growth factor receptor. Natural Product Com. 2022;17(11).

Tran LTT, Dang NYT, Nguyen Le NT, Nguyen HT, Ho DV, Do TT, Tran MH, Nguyen TK, Pham PTV. In silico and in vitro evaluation of alkaloids from Goniothalamus elegans

Ast. for breast cancer treatment. Nat Product Com. 2022;17(3).

Falodun A, Qiu Sheng-Xiang, G. Parkinson and S. Gibbons. Isolation and characterization of a new anticancer diterpenoid from Jatropha gossypifolia. Pharm Chem J.

;45;10.

Falodun A, Kragl U, Touem ST, Fahrenwaldt AVT, Langer P. A novel anticancer diterpenoid from Jatropha gossypifolia. Nat Prod Com. 2012;7;1-2.

Hans Achenbach, Dieter Frey. Cycloartanes and other terpenoids and phenylpropanoids from Monocyclanthus vignei. Phytochemistry. 1992;31(12);4263-4274.

Erharuyi O, Adhikari A, Falodun A, Jabeen A, Ahmmad M, Imad R, Choudhary MI. Cytotoxic, anti-inflammatory, and leishmanicidal activities of diterpenes isolated from the roots

of Caesalpinia pulcherrima. Planta Med. 2017;83;100-110.

Ahmad FB, Tukol WA, Omar S, Sharif AM. 5-Acetyl goniothalamin, a styryl dihydropyrone from Goniothalamus uvaroides. Phytochemistry. 1991;30(7);2430–2431.

Pilli RA, de Toledo I, Meirelles MA, Grigolo TA. Goniothalamin-related styryl lactones: isolation, synthesis, biological activity and mode of action. Curr Med Chem.

;26(41); 7372-7451.

Chia YC, Chang FR, Teng CM, Wu YC. Aristolactams and dioxoaporphines from Fissistigma balansae and Fissistigma oldhamii. J Nat Prod. 2000;63(8);1160-1163.

Lan YH, Chang FR, Yang YL, Wu YC. New constituents from stems of Goniothalamus amuyon. Chem Pharm Bull (Tokyo). 2006;54(7);1040-1043.

Imieje V, Zaki AA, Fasinu P, Ali J, Khan IA, Tekwani B, Khan SI, Nosa EO, Falodun A. Antiprotozoal and cytotoxicity studies of fractions and compounds from

Enantia chlorantha. Tropical J Nat Prod Res. 2017;1(2);89- 94.

Erharuyi O, Adhikari A, Falodun A, Imad R, Choudhary MI. Derivatization of cassane diterpenoids from Caesalpinia pulcherrima (L.) Sw. and evaluation of their cytotoxic and

leishmanicidal activities. Tetrahedron Let. 2016;57(20);2201-2206.

Choi YL, Kim JK, Choi SU, Min YK, Bae MA, Kim BT, Heo JN. Synthesis of aristolactam analogues and evaluation of their antitumor activity. Bioorg Med Chem Lett.

;19(11); 3036-3040.

Odalo JO, Joseph CC, Nkunya MH, Sattler I, Lange C, Friedrich G, Dahse HM, Möllman U. Aristolactams, 1-(2-Cmethyl-beta-D-ribofuranosyl)-uracil and other bioactive

constituents of Toussaintia orientalis. Nat Prod Commun. 2010;5(2);253-258.

Tsai IL, Lee FP, Wu CC, Duh CY, Ishikawa T, Chen JJ, Chen YC, Seki H, Chen IS. New cytotoxic cyclobutanoid amides, a new furanoid lignan and anti-platelet aggregation

constituents from Piper arborescens. Planta Med. 2005;71(6);535-542.

Published

2023-07-31

How to Cite

Tran, L. T. T., Nguyen, T. K., To, D. C., Pham, P. T., Tran, M. H., & Nguyen, T. T. (2023). Cytotoxic Activity of Compounds from Vietnamese Goniothalamus elegans Ast: http://www.doi.org/10.26538/tjnpr/v7i7.31. Tropical Journal of Natural Product Research (TJNPR), 7(7), 3496–3501. Retrieved from https://tjnpr.org/index.php/home/article/view/2252

Most read articles by the same author(s)

1 2 > >>