In vitro Antileukemic Activity of Extracts of Some Medicinal Plants from Upper Egypt in Human Chronic Leukemia K562 Cell Line

doi.org/10.26538/tjnpr/v5i12.12

Authors

  • Shimaa M. Abdelgawad Department of Pharmacognosy, Faculty of Pharmacy, Fayoum University, 63514, Egypt
  • Mona H. Hetta Department of Pharmacognosy, Faculty of Pharmacy, Fayoum University, 63514, Egypt
  • Ghada A. Fawzy Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562, Egypt
  • Hesham I. El-Askary Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562, Egypt

Keywords:

Antileukemic, Chronic myeloid leukemia, Medicinal plants, Screening, Upper Egypt

Abstract

Leukemia is the fourth most common cancer in Egypt, with higher incidence rates in Upper Egypt. Because there are several side effects associated with the use of drugs to treat leukemia, it is crucial to find more effective, safe, and cost-effective alternative treatment options. The present study was conducted to investigate the antileukemic potentials of some medicinal plants which are cultivated and used ethnomedicinally in Upper Egypt, where chronic myeloid leukemia (CML) is prevalent. Fifty-six different medicinal plants were extracted with 75% ethanol, and their hydro-ethanol extracts were tested against the human chronic leukemia K562 cell line at a concentration of 10 mg/mL using the trypan blue exclusion assay. The percentage of inhibition was determined for each extract. The results showed that Sesbania sesban L. Merr leaves, Curcuma aromatica Salisb. roots, Spinacia oleracea L. leaves, Quercus infectoria gall, and Thymus vulgaris L. leaves were the most active plant extracts against the leukemia K562 cell line, with percentage inhibition values of 100, 90.2, 88.9, 87, and 85.2%, respectively, compared to Taxol which had a value of 90.7%. The findings of this study revealed that the flora of Upper Egypt is a valuable source of plants, rich in antileukemic phytochemicals.

References

Alieldin N. NCI hospital based registry 2002–2010. [Online]. 2011. [cited 2014 Feb 23]. Available From: http://www.nci.cu.edu.eg/.

Petry CF. The Cambridge History of Egypt. (Vol. 1). Cambridge University Press; 2008.

Ibrahim AS, Khaled HM, Mikhail NN, Baraka H, Kamel H. Cancer incidence in Egypt: results of the national population-based cancer registry program. J Cancer Epidemiol. 2014; 2014(1):1-18.

Hussein S, Mohamed D, Hafez R. Risk factors of hematological malignancies in Upper Egypt: a case–control study. Egypt J Intern Med. 2019; 31(2):171-177.

Jabbour E and Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol. 2018; 93(3):442-459.

Eskandari S and Yazdanparast R. signaling. Bcl6 genesilencing facilitates PMA-induced megakaryocyte differentiation in K562 cells. J Cell Commun Signal. 2017; 11(4):357-367.

Pavlovsky C, Chan O, Talati C, Pinilla-Ibarz J. Ponatinib in the treatment of chronic myeloid leukemia and philadelphia chromosome positive acute lymphoblastic leukemia. Future Oncol. 2019; 15(3):257-269.

Shibata N, Ohoka N, Tsuji G, Demizu Y, Miyawaza K, UiTei K, Naito M. Deubiquitylase USP25 prevents degradation of BCR-ABL protein and ensures proliferation of Ph-positive leukemia cells. Oncogene. 2020; 39(19):3867-3878.

Khaled SA and Abd El Aziz NM. Demographic, clinical, and hematologic characteristics of patients with chronic myeloid leukemia in Upper Egypt: association with treatment responses. Egypt J Haematol. 2015; 40(4):195.

Tadesse F, Asres G, Abubeker A, Gebremedhin A, Radich J. Spectrum of BCR-ABL Mutations and Treatment Outcomes in Ethiopian Imatinib-Resistant Patients With Chronic Myeloid Leukemia. JCO Glob Oncol. 2021; 7(1):1187-1193.

Schrock AB, Zhu VW, Hsieh WS, Madison R, Creelan B, Silberberg J, Ou SHI. Receptor tyrosine kinase fusions and BRAF kinase fusions are rare but actionable resistance mechanisms to EGFR tyrosine kinase inhibitors. J Thorac Oncol. 2018; 13(9):1312-1323.

Ali MA. Chronic myeloid leukemia in the era of tyrosine kinase inhibitors: an evolving paradigm of molecularly targeted therapy. Mol Diagn Ther. 2016; 20(4):315-333.

Mahon F-X, Belloc F, Lagarde V, Chollet C, MoreauGaudry F, Reiffers J, Melo JV. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood, Am J Hematol. 2003; 101(6):2368-2373.

Elghannam DM, Ibrahim L, Ebrahim MA, Azmy E, Hakem H. Association of MDR1 gene polymorphism (G2677T) with imatinib response in Egyptian chronic myeloid leukemia patients. Hematol. 2014; 19(3):123-128.

El-Menoufy MA, El Naggar AA, Ziada LE. ‘Gatekeeper’ mutation in patients with chronic myeloid leukemia resistant to imatinib therapy: effect on survival. Egypt J Haematol. 2018; 43(3):138.

Khalil NA, Desouky MN, Diab IH, Hamed NA, Mannaa HF. MicroRNA 30a Mediated Autophagy and Imatinib Response in Egyptian Chronic Myeloid Leukemia Patients. Indian J Hematol Blood Transfus. 2019; 36(3):491-497.

Khajapeer KV and Baskaran R. Natural products for treatment of chronic myeloid leukemia. Anti-cancer drugsnature, synthesis and cell.(1st ed). Intech publications, Croatia. 2016; 1-48p.

Kandal HA, Swart JA, Yacoub HA, Gerkema MP. The role of traditional knowledge policies in Egypt: the case of Wadi Allaqi. Environ Dev Sustain. 2021; 23(8):11751-11765.

Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018;19(6):1578.

Lage OM, Ramos MC, Calisto R, Almeida E, Vasconcelos V, Vicente F. Current screening methodologies in drug discovery for selected human diseases. Mar Drugs. 2018; 16(8):279.

Valletta E, Rinaldi A, Marini M, Franzese O, Roscetti G. Distinct Hypericum perforatum L. total extracts exert different antitumour activity on erythroleukemic K562 cells. Phytother Res. 2018; 32(9):1803-1811.

Yang C, Cai H, Meng X. Polyphyllin D induces apoptosis and differentiation in K562 human leukemia cells. Int Immunopharmacol. 2016; 36(1):17-22.

Liu Y, Ren Z, Li X, Zhong J, Bi Y, Li R, Yu X. Pristimerin Induces Autophagy‐Mediated Cell Death in K562 Cells through the ROS/JNK Signaling Pathway. Chem Biodivers. 2019; 16(8):e1900325.

Tatiya AU, Dande PR, Mutha RE, Surana SJ. Effect of saponins from of Sesbania sesban l.(merr) on acute and chronic inflammation in experimental induced animals. JBiol Sci.2013; 13(3):123.

Soren AD, Chen RP, Yadav AK. In vitro and in vivo anthelmintic study of Sesbania sesban var. bicolor, a traditionally used medicinal plant of Santhal tribe in Assam, India J Parasit Dis. 2021; 45(1):1-9.

Tatiya AU, Dande PR, Mutha RE, Surana S. Effect of Saponins of Sesbania sesban L.(Merr) On Acute And Chronic Inflammation in Experimental Induced Animals. J Biol Sci. 2013; 13(3):123-130.

Das N, Chandran P, Chakraborty S. Potent spermicidal effect of oleanolic acid 3-beta-D-glucuronide, an active principle isolated from the plant Sesbania sesban Merrill. J Contracept. 2011; 83(2):167-175.

Mahamat OB, Younes S, Otchom BB, Franzel S, Mahamat ADO, Fadoua A. Ecology, Morphology, Distribution, and Use of Sesbania tchadica (Sesbania Sesban) from the Republic of Chad: A Review. [Online]. 2021. Available from: https://www.researchsquare.com/article/rs-

/v1.

Dorsaz AC, Hostettmann M, Hostettmann K. Molluscicidal saponins from Sesbania sesban. Planta Med. 1988; 54(03):225-227.

Haraguchi M, Mimaki Y, Braggio MM, Santiago WO, Yokosuka A, Sashida Y. Triterpene Saponins from the Leaves of Sesbania sesban (Natural Medicine Note). J Nat Med. 2000; 54(6):350.

Dianhar H, Syah YM, Mujahidin D, Hakim EH, Juliawaty LD. A flavone derivative from Sesbania sesban leaves and its cytotoxicity against murine leukemia P-388 cells. Paper presented at: AIP Conference Proceedings, 2014.

Saxena V and Mishra L. A novel lupinisoflavone glycoside from stems of Sesbania aegyptiaca Poir. Journal of the Institution of Chemists (India).1999; 71(5):191-192.

Khattab AM and Nassar MI. Phytochemical and molluscicidal studies on Peltophorum africanum and Sesbania sesban. Bull Natl Res Cent (Egypt). 1998; 23(4):401-407.

Zamrus SNH, Akhtar MN, Yeap SK, Quah CK, Loh WS, Alitheen NB, Shah SAA. Design, synthesis and cytotoxic effects of curcuminoids on HeLa, K562, MCF-7 and MDAMB-231 cancer cell lines. Chem Cent J. 2018; 12(1):1-10.

Kobori M, Nishiba Y, Shinohara K. Effect of Spinach Extracts on the Proliferation and on Some Phenotypic Characteristics of Human Myeloid Leukemia Cell Lines. Animal Cell Technology: Basic & Applied Aspects: Springer; 1993; 189-193p.

Mohanraj M. An Innovative Assimilation on Pharmacognostical, Phytochemical and Contending against Malassezia Furfur of Spinacia Oleracea L. Leaves and Its Bioiactive Component (Doctoral dissertation, College of Pharmacy, Madurai Medical College, Madurai) 2018.

Yuk H J, Ryu HW, Kim DY, Park MH, Seo WD, Jeong SH, Oh SR. Comparison of flavonoid and policosanol profiles in Korean winter-spinach (Spinacia oleracea L.) cultivated in different regions. Food Chem. 2019; 279(1):202-208.

Ferreres F, Castañer M, Tomás-Barberán FA. Acylated flavonol glycosides from spinach leaves (Spinacia oleracea). Phytochem.1997; 45(8):1701-1705.

Hasan HF. Evaluation of the effect of flavonoids isolated from Spinacia oleracea leaves on pituitary-adrenal ovarian axis in mice treated with doxorubicin. J Adv Pharm Educ. 2019; 9(3):91-95.

Aritomi M, Komori T, Kawasaki T. Flavonol glycosides in leaves of Spinacia oleracea. Phytochem. 1985; 25(1):231-234.

Edenharder R, Keller G, Platt KL, Unger KK. Isolation and characterization of structurally novel antimutagenic flavonoids from spinach (Spinacia oleracea). J Agric Food Chem. 2001; 49(6):2767-2773.

Chen YS and Feng YQ. Rapid Determination of Endogenous 20-Hydroxyecdysone in Plants on MALDITOF/TOF Mass Spectrometry via Chemical Labeling Based on Boronate Affinity. J Anal Test. 2021; 4(3):175-182.

Dawidar A and Amer M. Sterol content of Spinacia oleracea. Phytochem.1973; 12(5):1181-1182.

Mithöfer A, Jakupovic J, Weiler E. A triterpenoid glycoside from Spinacia oleracea. Nat Prod Lett.1999; 14(1):5-10.

Bunea A, Andjelkovic M, Socaciu C, Bobis O, Neacsu M, Verhé R, Van Camp J. Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chem. 2008; 108(2):649-656.

Kamiloglu S. Industrial freezing effects on the content and bioaccessibility of spinach (Spinacia oleracea L.) polyphenols. J Sci Food Agric. 2020; 100(11):4190-4198.

De Valle-Prieto MB, Delgado-Adámez J, Gil MV, Martillanes S, Franco MN, Martín-Vertedor D. Virgin olive oil enriched with lutein-zeaxanthin from Spinacia oleracea. J Oleo Sci. 2017; 66(5):463-468.

Wang R, Furumoto T, Motoyama K, OKAZAKI K, KONDO A, FUKUI H. Possible antitumor promoters in Spinacia oleracea (spinach) and comparison of their contents among cultivars. Biosci Biotechnol Biochem. 2002; 66(2):248-254.

Roberts JL and Moreau R. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food Funct. 2016; 7(8):3337-3353.

Mahnaz M, Leila A, Majid T. Antioxidant and cytotoxic activities of ethanol extract of Quercus Infectoria galls. 21st International Iranian Congress of Physiology and Pharmacology. Tabriz University of Medical Sciences; 2013; 21(1):1-2.

Reddy TC, Reddy DB, Aparna A, Arunasree KM, Gupta G, Achari C, Reddy GV, Lakshmipathi V, Subramanyam A, Reddanna P. Anti-leukemic effects of gallic acid on human leukemia K562 cells: Downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation. Toxicol In

Vitro. 2012; 26(3):396-405.

Amirghofran Z and Karimi MH. Cytotoxic activity of Thymus vulgaris, Achillea millefolium and Thuja orientalis on different growing cell lines. Med J Islam Repub Iran. 2001; 15(3):149-154.

Lampronti I, Saab AM, Gambari R. Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division. Int J Oncol. 2006; 29(4):989-995.

Horvathova E, Turcaniova V, Slamenova D. Comparative study of DNA-damaging and DNA-protective effects of selected components of essential plant oils in human leukemic cells K562. Neoplasma. 2007; 54(6):478.

Downloads

Published

2021-12-01

How to Cite

M. Abdelgawad, S., H. Hetta, M., A. Fawzy, G., & I. El-Askary, H. (2021). In vitro Antileukemic Activity of Extracts of Some Medicinal Plants from Upper Egypt in Human Chronic Leukemia K562 Cell Line: doi.org/10.26538/tjnpr/v5i12.12. Tropical Journal of Natural Product Research (TJNPR), 5(12), 2115–2122. Retrieved from https://tjnpr.org/index.php/home/article/view/225