Molecular Dynamics, Docking and Prediction of Absorption, Distribution, Metabolism and Excretion of Lycopene as Protein Inhibitor of Bcl2 and DNMT1

http://www.doi.org/10.26538/tjnpr/v7i7.23

Authors

  • Farida Rahim Faculty of Pharmacy, Universitas Perintis Indonesia, Padang, Indonesia;
  • Purnawan P Putra Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia;
  • Friardi Ismed Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia;
  • Andani E Putra Faculty of Medicine, Universitas Andalas, Padang, Indonesia.
  • Henny Lucida Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia;

Keywords:

DNMT1, Bcl2, Molecular Dynamics, Docking, Cancer, Lycopene

Abstract

Docking has been used currently in the early development of a drug candidate and a useful tool to predict the absorption, distribution, metabolism, and excretion (ADME) properties. Lycopene shows the strongest antioxidant activity among carotenoids, and has anticancer activity. This study predicts the ADME and simulates the docking of lycopene to predict the binding to the B-cell
lymphoma 2 (Bcl2) and DNA (cytosine-5)-methyltransferase 1 (DNMT1) proteins in cancer cells. The computational method was conducted using pkCSM and SWISS ADME applications, and Gnina software to simulate lycopene docking to the proteins. Results show that lycopene has a molecular weight > 500, partition coefficient (log P) > 5, with a limited aqueous solubility, low skin permeability, however shows a good intestinal permeability and an active uptake through the blood brain barrier, the Convolutional Neural Network (CNN) Pose Score in protein Bcl2 of 0.7843, and DNMT1 score of 0.1279. Lycopene is predicted to have an interaction with Bcl2.
There is a pi-alkyl interaction with amino acids PHE63 and TYR67, and a Pi-Sigma interaction with amino acid TYR161. ARG66, ALA108, LEU96, MET74, and VAL92 are among the amino acids that exhibit alkyl-alkyl interactions. Homology modelling was implemented due to the presence of a gap in the sequence within the chain, specifically between residues 31 and 49. The stability of lycopene-substrate interactions was evident during 20 ns molecular dynamics simulations, indicating its consistent behavior over the duration.

References

Qi WJ, Sheng WS, Peng C, Xiaodong M, Yao TZ. Investigating into anti-cancer potential of lycopene: Molecular targets. Biomed Pharmacother. 2021; 138: 111546. Doi: 10.1016/j.biopha.2021.111546.

Soares N, Machado CL, Trindade BB, Lima IC, Gimba ERP, Teodoro AJ, Takiya C, Borojevic R.. Lycopene extracts from different tomato-based food products induce apoptosis in cultured human primary prostate cancer cells and regulate TP53, Bax and Bcl2 transcript expression. Asian Pac J. Cancer Prev. 2017; 18(2): 339–345. Doi: 10.22034/APJCP.2017.18.2.339.

Teodoro AJ, Oliveira FL, Martins NB, Maia GA, Martucci RB, Borojevic R.. Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines. Cancer Cell Int. 2012; 12 (1): 36. Doi: 10.1186/1475-2867-12-36.

Quy PT, Bui TQ, Bon NV, Phung PTK, Duc DPN, Nhan DT, Phu NV, To DC, Nhung NTA. Euonymus laxiflorus Champ. Bioactive Compounds Inhibited α-Glucosidase and Protein Phosphatase 1B – A Computational Approach Towards the Discovery of Antidiabetic Drugs. Trop J. Nat Prod Res. 2023; 7(5):2974-2991. Doi: 10.26538/tjnpr/v7i5.21.

Fadana Y, Dinana IA, Srihardyastutie A, Rollando R, Masruri M. Screening Indonesian Pine (Pinus merkusii Jungh at de Vriese) Compound as an Antibacterial Agent: In Vitro and In Silico Study. Trop J. Nat Prod Res. 2023; 7(3): 2586-2595. Doi: 10.26538/tjnpr/v7i3.19.

Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med Chem. 2015; 58(9): 4066–4072. Doi: 10.1021/acs.jmedchem.5b00104.

Touré BB, Miller-Moslin K, Yusuff N, Perez L, Doré M, Joud C, Michael W, Dipietro L, Van Der Plas S, McEwan M, Lenoir F, Hoe M, Karki R, Springer C, Sullivan J, Levine K, Fiorilla C, Xie X, Kulathila R, Visser M. The Role of the acidity of N-heteroaryl sulfonamides as inhibitors of Bcl2

family protein-protein interactions. ACS Med Chem Lett. 2013; 4(2): 186–190.

Zhang ZM, Liu S, Lin K, Luo Y, Perry JJ, Wang Y, Song J. Crystal Structure of Human DNA Methyltransferase 1. J. Mol Biol. 2015; 427(15):2520–2531. Doi: 10.1016/j.jmb.2015.06.001.

McNutt AT, Francoeur P, Aggarwal R, Masuda T, Meli R, Ragoza M, Sunseri J, Koes DR. Gnina 1.0: molecular docking with deep learning. J. Cheminformatics. 2021; 13: 43.

Bannwarth C, Ehlert S, Grimme S. GFN2-xTB - An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem Theory and Comput. 2019; 15(3): 1652–1671. Doi: 10.1021/acs.jctc.8b01176.

Suharti N, Dachriyanus, Lucida H, Wahyuni FS, Hefni D, Putra PP. In Silico Prediction and In Vitro Cytotoxic Activity of Arbuscular Mycorrhizal Fungi Induced Zingiber officinale Var. Rubrum. Res. J. Pharm Technol . 2022; 15(11): 4913-8. Doi: 10.52711/0974-360X.2022.00825.

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, De Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46 (W1), W296–W303. Doi: 10.1093/nar/gky427.

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1–2: 19–25. Doi: 10.1016/j.softx.2015.06.001.

Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem Theory Comput. 2015; 11(8): 3696–3713. Doi.org/10.1021/acs.jctc.5b00255.

Sousa Da Silva AW, Vranken WF. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes. 2012; 5: 367. Doi.org/10.1186/1756-0500-5-367.

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general Amber force field. J. Comput Chem. 2004; 25(9): 1157–1174. Doi: 10.1002/jcc.20035.

Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys Chem A. 2001; 105(43): 9954–9960. Doi: 10.1021/jp003020w.

Darden T, York D, Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem Phys. 1993; 98(12): 10089–10092. Doi: 10.1063/1.464397.

Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl Phys. 1981; 52(12): 7182–7190. Doi: 10.1063/1.328693.

Putra PP, Junaidin. Molecular dynamics simulation of protein-ligand, calculation of MMPBSA and MMGBSA using GROMACS. (1st ed.). 2022. Future Science.

Lipinsky CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997; 23: 3-25.

Lipinski CA. Lead- and drug-like compounds: The rule-offive revolution. Drug Discov Today Technol. 2004; 1(4): 337–341. Doi: 10.1016/j.ddtec.2004.11.007.

Puah BP, Jalil J, Attiq A, Kamisah Y. New Insights into Molecular Mechanism behind Anti-Cancer Activities of Lycopene. Molecules. 2021; 26: 3888. Doi: 10.3390/molecules26133888.

Dahlgren D, Lennernas H. Intestinal Permeability and Drug Absorption: Predictive Experimental, Computational and In Vivo Approaches. Pharmaceutics. 2019; 11: 411. Doi: 10.3390/pharmaceutics11080411.

Goenawan H, Pratiwi YS, Dewi NP, Achadiyani A, Sylviana N. Beneficial Effect of Lycopene on Diabetes Mellitus and its Possible Mechanism: A Review. Trop J. Nat Prod Res. 2021; 5(3): 420-433. Doi: 10.26538/tjnpr/v5i3.2.

Geldenhuys WJ, Mohammad AS, Adkins CE, Lockman PR. Molecular determinants of blood–brain barrier permeation. Ther Deliv. 2015; 6(7): 961–971.

Sowndhariya S, Ravi S, Dharani J, Sripathi R. Chemical Constitution, In-silico Molecular Docking Studies and Antibacterial Activity of Flower Essential Oil of Artabotrys hexapetalus. Jordan J. Pharm Sci. 2022; 15(3): 341–354. Doi: 10.35516/jjps.v15i3.408.

Aktepe OH, Şahin TK, Güner G, Arik Z, Yalçin Ş. Lycopene sensitizes the cervical cancer cells to cisplatin via targeting nuclear factor-kappa b (Nf-κb) pathway. Turkish J. Med Sci. 2021; 51(1):368–74.

Arpudhamary V, Priya S, Manzoor MAP, Mubarakali D, Hemalatha S. Apoptotic-inducing factor 1 (AIF1) plays a critical role in cembranoid mediated apoptosis to control cancer: Molecular docking and dynamics study. Biocatal Agric Biotechnol. 2019: 22. Putra PP, Fauzana A, Salva KA, Sofiana M, Sari IP, Lucida H. Homology modeling and mutation prediction of ACE2 from COVID-19. Pharmaciana. 2021; 11(2): 163. Doi:

12928/pharmaciana.v11i2.19089..

Published

2023-07-31

How to Cite

Rahim, F., Putra, P. P., Ismed, F., Putra, A. E., & Lucida, H. (2023). Molecular Dynamics, Docking and Prediction of Absorption, Distribution, Metabolism and Excretion of Lycopene as Protein Inhibitor of Bcl2 and DNMT1: http://www.doi.org/10.26538/tjnpr/v7i7.23. Tropical Journal of Natural Product Research (TJNPR), 7(7), 3439–3444. Retrieved from https://tjnpr.org/index.php/home/article/view/2244