Combinatory in silico Study on Anti-Diabetic Potential of Ganoderma lucidum Compounds Against α-Glucosidase http://www.doi.org/10.26538/tjnpr/v7i7.21

Main Article Content

Nguyen P.D. Nguyen
Phan T. Quy
Dao C. To
Thanh Q. Bui
Nguyen V. Phu
Tran T. A. My
Phi H. Nguyen
Nguyen H. Kien
Nguyen T. T. Hai
Nguyen T. A. Nhung

Abstract

Ganoderma species is excessively well-known for a variety of medicinal effects and health benefits by folk experiences, thus often underestimated for componential specification. Ganoderma lucidum methanol-extracted components (1-15) were selected from the literature and subjected for computational evaluations on the anti-diabetic potentiality. As the results, molecular docking simulation suggests the most promising PDB-3W37 (α-glucosidase) inhibitors from the standpoint of static intermolecular interaction, i.e. 1 (DS -12.8 kcal.mol-1; RMSD 1.23 Å) > 2 (DS -12.3 kcal.mol-1; RMSD 1.76 Å) > 11 (DS -12.0 kcal.mol-1; RMSD 1.20 Å) ≈ 13 (DS -12.1 kcal.mol-1; RMSD 1.58 Å); QSARIS confirm their biocompatibility given the physicochemical properties in reference to Lipinski's rule of five; ADMET pharmacokinetics and pharmacology justify their pharmaceutical applicability. Quantum-based retrievals justify their suitability from
the view of intrinsic chemical properties, i.e: ground-state energy, dipole moment, and band gap: 1 (-1888.85 eV; 9.129 Debye; 5.952 eV), 2 (-1887.64 eV; 6.689 Debye; 6.393 eV), 11 (-1961.62 eV; 5.106 Debye; 3.599 eV), 13 (-1543.14 eV; 8.294 Debye; 4.598 eV). The results encourage experimental attempts for anti-diabetic applications on 1 (Butyl lucidenate P), 2 (Butyl lucidenate E2), 11 (Methyl ganoderate H), and 13 (Methyl lucidenate N).

Article Details

How to Cite
Nguyen, N. P., Quy, P. T., To, D. C., Bui, T. Q., Phu, N. V., My, T. T. A., Nguyen, P. H., Kien, N. H., Hai, N. T. T., & Nhung, N. T. A. (2023). Combinatory in silico Study on Anti-Diabetic Potential of Ganoderma lucidum Compounds Against α-Glucosidase: http://www.doi.org/10.26538/tjnpr/v7i7.21. Tropical Journal of Natural Product Research (TJNPR), 7(7), 3421-3432. https://tjnpr.org/index.php/home/article/view/2242
Section
Articles

References

Pk MMU, Islam MS, Rumana P, Subhajit D, Talukder RI, Soma NJ, Matiar R. Enzyme inhibitory and antioxidant activity of combination of two edible mushrooms of Ganoderma lucidum and Pleurotus ostreatus. Trop J Nat Prod Res. 2018;2(7):314–319.

Lee MK, Hung TM, Cuong TD, Na M, Kim JC, Kim E, Park H, Choi JS, Lee I, Bae K. Ergosta‐7, 22‐diene‐2β, 3α, 9α‐triol from the Fruit Bodies of Ganoderma lucidum Induces Apoptosis in Human Myelocytic HL‐60 Cells. Phyther Res. 2011;25(11):1579–1585.

Tung NT, Cuong TD, Hung TM, Kim JA, Woo MH, Choi JS, Lee JH, Min BS. Cytotoxic and anti-angiogenic effects of lanostane triterpenoids from Ganoderma lucidum. Phytochem Lett. 2015;12:69–74.

Tung NT, Cuong TD, Hung TM, Lee JH, Woo MH, Choi JS, Kim J, Ryu SH, Min BS. Inhibitory effect on NO production of triterpenes from the fruiting bodies of Ganoderma lucidum. Bioorg Med Chem Lett. 2013;23(5):1428–1432.

Chen B, Tian J, Zhang J, Wang K, Liu L, Yang B, Bao L, Liu H. Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase. Fitoterapia. 2017;120:6–16.

Yang C, Li W, Li C, Zhou Z, Xiao Y, Yan X. Metabolism of ganoderic acids by a Ganoderma lucidum cytochrome P450 and the 3-keto sterol reductase ERG27 from yeast. Phytochemistry. 2018;155:83–92.

Zhao XR, Huo XK, Dong PP, Wang C, Huang SS, Zhang BJ, Zhang HL, Deng S, Liu KX, Ma XC. Inhibitory effects of highly oxygenated lanostane derivatives from the fungus Ganoderma lucidum on P-glycoprotein and α-glucosidase. J Nat Prod. 2015;78(8):1868–1876.

Fan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol. 2019;7(2):83–89.

Quy PT, Bui TQ, Bon N V, Phung PTK, Duc DPN, Nhan DT, Phu N V, To DC, Nhung NTA. Euonymus laxiflorus Champ. Bioactive Compounds Inhibited α-Glucosidase and Protein Phosphatase 1B – A Computational Approach Towards the Discovery of Antidiabetic Drugs. Trop J Nat

Prod Res Available. 2023;7(5):2974–2991.

Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239–2251.

Rabasa‐Lhoret R, Chiasson J. α‐Glucosidase inhibitors. Int Textb diabetes Mellit. 2003;

Kimura A, Lee JH, Lee IS, Lee HS, Park KH, Chiba S, Kim D. Two potent competitive inhibitors discriminating α- glucosidase family I from family II. Carbohydr Res. 2004;339(6):1035–1040.

Goad LJ, Akihisa T. Mass spectrometry of sterols. In: Analysis of Sterols. Springer; 1997. page 152–196.

Cambie RC, Le Quesne PW. Chemistry of fungi. Part III. Constituents of Coriolus sanguineus Fr. J Chem Soc C Org. 1966;72–4.

Kikuchi T, Kanomi S, Murai Y, Kadota S, Tsubono K, Ogita ZI. Constituents of the Fungus Ganoderma lucidum (FR.) KARST. II.: Structures of Ganoderic acids F, G, and H, Lucidenic acids D2 and E2, and related compounds. Chem Pharm Bull. 1986;34(10):4018–4029.

Nishitoba T, Oda K, Sato H, Sakamura S. Novel triterpenoids from the fungus Ganoderma lucidum. Agric Biol Chem. 1988;52(2):367–372.

Fujita A, Arisawa M, Saga M, Hayashi T, Morita N. Two new lanostanoids from Ganoderma lucidum. J Nat Prod. 1986;49(6):1122–1125.

Xiangli Z, Haiying B. Advances of Researches on Triterpene Constituents and Pharmacology of Ganoderma lucidum. J Fungal Res. 2004;2(1):68–77.

Lee I, Kim H, Youn U, Kim J, Min B, Jung H, Na M, Hattori M, Bae K. Effect of lanostane triterpenes from the fruiting bodies of Ganoderma lucidum on adipocyte differentiation in 3T3-L1 cells. Planta Med. 2010;76(14):1558–1563.

Kikuchi T, Kanomi S, Kadota S, Murai Y, Tsubono K, Ogita ZI. Constitutents of the fungus Ganoderma lucidum (FR.) KARST. I.: structures of ganoderic acids C2, E, I, and K, lucidenic acid F and related compounds. Chem Pharm Bull. 1986;34(9):3695–3712.

World Health Organization. Global report on diabetes. Geneva, Switzeland: WHO Press; 2016.

Sabuhom P, Subin P, Luecha P, Nualkaew S, Nualkaew N. Effects of Plant Part Substitution in a Thai Traditional Recipe on α-Glucosidase Inhibition. Trop J Nat Prod Res. 2023;7(5):2919–2925.

Barber E, Houghton MJ, Williamson G. Flavonoids as human intestinal α-glucosidase inhibitors. Foods. 2021;10(8):Article ID 1939.

DiNicolantonio JJ, Bhutani J, O’Keefe JH. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Hear. 2015;2(1):Article ID e000327.

Zhang F, Xu S, Tang L, Pan X, Tong N. Acarbose with comparable glucose-lowering but superior weight-loss efficacy to dipeptidyl peptidase-4 inhibitors: a systematic review and network meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne). 2020;11:Article ID 00288.

McIver LA, Tripp J. Acarbose. US National Library of Medicines, National Institutes of Health. 10 Aug 2020.

Molecular Operating Environment (MOE), 2015.02 Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2015.

Tarasova O, Poroikov V, Veselovsky A. Molecular Docking Studies of HIV-1 Resistance to Reverse Transcriptase Inhibitors: Mini-Review. Molecules. 2018;23(5):11–13. 29. Thai KM, Le DP, Tran NVK, Nguyen TTH, Tran TD, Le MT. Computational assay of Zanamivir binding affinity with original and mutant influenza neuraminidase 9 using molecular docking. J Theor Biol. 2015;385:31–39.

Ngo T Du, Tran TD, Le MT, Thai KM. Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds. Mol Divers. 2016;20(4):945–961.

Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron. 1980;36(22):3219–3228.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.

Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58(9):4066–4072.

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci.

Hohenstein EG, Chill ST, Sherrill CD. Assessment of the performance of the M05− 2X and M06− 2X exchangecorrelation functionals for noncovalent interactions in biomolecules. J Chem Theory Comput. 2008;4(12):1996– 2000.

Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys. 1985;83(2):735–746.

Thao TTP, Bui TQ, Hai NTT, Huynh LK, Quy PT, Bao NC, Dung NT, Chi NL, Van Loc T, Smirnova IE. Newly synthesised oxime and lactone derivatives from Dipterocarpus alatus dipterocarpol as anti-diabetic inhibitors: experimental bioassay-based evidence and theoretical

computation-based prediction. RSC Adv. 2021;11(57):35765–35782.

Thao TTP, Bui TQ, Quy PT, Bao NC, Van Loc T, Van Chien T, Chi NL, Van Tuan N, Van Sung T, Nhung NTA. Isolation, semi-synthesis, docking-based prediction, and bioassaybased activity of Dolichandrone spathacea iridoids: new catalpol derivatives as glucosidase inhibitors. RSC Adv.

;11(20):11959–11975.

Feynman R. The Feynman lectures on physics - Volume II. Millenium. Gottlieb MA, editor. New York: Basic Books; 2010. 11.3.

Cordes M, Giese B. Electron transfer in peptides and proteins. Chem Soc Rev. 2009;38(4):892–901.