Nephroprotective Effects of Spirulina platensis on NRK-52E Cell Line: LC-HRMS and Docking Studies Targeting Epidermal Growth Factor Receptor http://www.doi.org/10.26538/tjnpr/v7i7.15
Main Article Content
Abstract
Diabetic nephrotoxicity is a significant health concern that may lead to end-stage renal disease. This study explored the nephroprotective potential of Spirulina platensis extract fractions on NRK-52E (Normal Rat Kidney-52E) cell lines. Spirulina platensis underwent Soxhlet extraction using methanol as the solvent. The extracted material was then subjected to column chromatography for the purpose of separating the phytoconstituents. This process successfully yielded four distinct fractions: n-hexane, dichloromethane, ethyl acetate, and methanol. HRLCMS (High-Resolution Liquid Chromatography Mass Spectrometry) analysis revealed a rich phytochemical profile (methanol: 79 compounds, ethyl acetate: 51, dichloromethane: 32, nhexane: 19). Molecular docking (AutoDock tool) highlighted several compounds with high EGFR binding affinity, including Atalanine from the ethyl acetate fraction (score -11.9 kcal/mol), indicating potential EGFR (Epidermal Growth Factor Receptor) inhibition, a known factor in diabetic nephropathy. NRK-52E cells were treated with varying concentrations of these fractions, and % inhibition was assessed using the MTT assay. Fractions of methanol (10,40,100 μg/mL), ethyl acetate (10,40,100 μg/mL), and dichloromethane (40,100 μg/mL) demonstrated the most significant (p<0.001), while n-hexane (100 μg/mL) showed significant (p<0.05) protective effects on NRK-52E cells. Methanol fraction exhibited the strongest effect (% inhibition of 36.725 ± 6.54 at 100 µg/mL). Morphological evaluations of NRK-52E cells demonstrated a decreasing cell growth trend in response to the fractions of Spirulina platensis, listed in descending order of effect:
methanol, ethyl acetate, dichloromethane, and n-hexane. The results indicate that Spirulina platensis, particularly the methanol fraction obtained through extraction, shows promise as a natural therapeutic for addressing diabetic nephrotoxicity.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Cole JB, Florez JC. Genetics of diabetes mellitus and
diabetes complications. Nat Rev Nephrol. 2020; 16(7):377-
https://doi.org/10.1038/s41581-020-0278-5
Abass RJ, Sharba IR. GDF-15 A potential Biomarker of
Diabetic Nephropathy in Iraq Patients with Chronic Kidney
Disease. Trop J Nat Prod Research. 2020; 4(12):1081-7.
https://doi.org/10.26538/tjnpr/v4i12.9
Zhang MZ, Wang Y, Paueksakon P, Harris RC. Epidermal
growth factor receptor inhibition slows progression of
diabetic nephropathy in association with a decrease in
endoplasmic reticulum stress and an increase in autophagy.
Diabetes. 2014; 63(6):2063-72.https://doi.org/10.2337/db13-
Tang J, Liu N, Zhuang S. Role of epidermal growth factor
receptor in acute and chronic kidney injury. Kidney Int.
; 83(5): 804-10.https://doi.org/10.1038/ki.2012.435
Susatyo P, Rifanda AA, Simanjuntak SB, Chasanah T.
Antioxidant Effect of Clorella vulgaris on Wistar Rat Kidney
Induced by CCl4: A Histopathological Review.
Biosaintifika: J Bio & Bio Edu. 2018; 10(1): 169-75.
Kammoun I, Sellem I, Ben Saad H, Boudawara T, Nasri M,
Gharsallah N, Mallouli L, Amara IB. Potential benefits of
polysaccharides derived from marine alga Ulva lactuca
against hepatotoxicity and nephrotoxicity induced by
thiacloprid, an insecticide pollutant. Environmental
toxicology. 2019; 34(11): 1165-76.
Kim IH, Kwon MJ, Jung JH, Nam TJ. Protein extracted from
Porphyra yezoensis prevents cisplatin-induced
nephrotoxicity by downregulating the MAPK and NF-κB
pathways. Int J Mol Medi. 2018 Jan 1;41(1):511-20.
Pradhan B, Nayak R, Patra S, Jit BP, Ragusa A, Jena M.
Bioactive metabolites from marine algae as potent
pharmacophores against oxidative stress-associated human
diseases: A comprehensive review. Mol. 2020; 26(1): 37.
Shahidi F, Rahman MJ. Bioactives in seaweeds, algae, and
fungi and their role in health promotion. J Food Bioact. 2018;
:58-81.
Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The
antioxidant, immunomodulatory, and anti-inflammatory
activities of Spirulina: an overview. Arch Toxicol. 2016; 90:
-40.
Biris-Dorhoi ES, Michiu D, Pop CR, Rotar AM, Tofana M,
Pop OL, Socaci SA, Farcas AC. Macroalgae—A sustainable
source of chemical compounds with biological activities.
Nutrients. 2020;12(10): 3085.
Shao W, Ebaid R, El-Sheekh M, Abomohra A, Eladel H.
Pharmaceutical applications and consequent environmental
impacts of Spirulina (Arthrospira): An overview. Grasas y
Aceites. 2019; 70(1):e292-
.https://doi.org/10.3989/gya.0690181
Prozialeck WC, Edwards JR, Lamar PC, Smith CS.
Epithelial barrier characteristics and expression of cell
adhesion molecules in proximal tubule-derived cell lines
commonly used for in vitro toxicity studies. Toxicol In Vitro.
; 20(6):942-
https://doi.org/10.1016/j.tiv.2005.11.006
Srivastava A, Tiwari R, Srivastava V, Singh TB, Asthana
RK. Freshwater cyanobacteria Geitlerinema sp. CCC728 and
Arthrospira sp. CCC729 as an anticancer drug resource. PloS
one. 2015; 10(9):e0136838.
https://doi.org/10.1371/journal.pone.0136838
Noumi E, Snoussi M, Anouar EH, Alreshidi M, Veettil VN,
Elkahoui S, Adnan M, Patel M, Kadri A, Aouadi K, De Feo
V. HR-LCMS-based metabolite profiling, antioxidant, and
anticancer properties of Teucrium polium L. methanolic
extract: Computational and in vitro study. Antioxid. 2020;
(11): 1089.https://doi.org/10.3390/antiox9111089
9.Li Z, Li Y, Overstreet JM, Chung S, Niu A, Fan X, Wang
S, Wang Y, Zhang MZ, Harris RC. Inhibition of epidermal
growth factor receptor activation is associated with improved
diabetic nephropathy and insulin resistance in type 2
diabetes. Diabetes. 2018; 67(9):1847-
https://doi.org/10.2337/db17-1513
e Silva AD, Moreira LM, de Magalhães WT, Farias WL,
Rocha MV, Bastos AK. Extraction of biomolecules from
Spirulina platensis using non-conventional processes and harmless solvents. J Environ Chem Eng. 2017; 5(3):2101-
https://doi.org/10.1016/j.jece.2017.04.008
Sun Y, Chang R, Li Q, Li B. Isolation and characterization
of an antibacterial peptide from protein hydrolysates of
Spirulina platensis. Eur Food Res Technol. 2016; 242: 685-
https://doi.org/10.1007/s00217-015-2576-x
Salunke M, Wakure B, Wakte P. HR-LCMS assisted
phytochemical screening and an assessment of anticancer
activity of Sargassum squarrossum and Dictyota Dichotoma
using in vitro and molecular docking approaches. J Mol
Structure. 2022;
:133833.https://doi.org/10.1016/j.molstruc.2022.13383
Salunke M, Wakure B, Wakte P. High-resolution liquid
chromatography and mass spectrometry (HR-LCMS)
assisted phytochemical profiling and an assessment of
anticancer activities of Gracilaria foliifera and Turbinaria
conoides using in vitro and molecular docking analysis. J Bio
Str and Dynamics. 2022;1-16.
https://doi.org/10.1080/07391102.2022.2108495
Sweidan K, Sabbah DA, Bardaweel S, Dush KA, Sheikha
GA, Mubarak MS. Computer-aided design, synthesis, and
biological evaluation of new indole-2-carboxamide
derivatives as PI3Kα/EGFR inhibitors. Bioorg Med Chem
Lett. 2016;26(11):2685-
https://doi.org/10.1016/j.bmcl.2016.04.011
Liu Y, Li Y, Xu L, Shi J, Yu X, Wang X, Li X, Jiang H, Yang
T, Yin X, Du L. Quercetin attenuates podocyte apoptosis of
diabetic nephropathy through targeting EGFR signaling.
Front Pharmacol. 2022;
:3901.https://doi.org/10.3389/fphar.2021.792777
Rehman A, Noor F, Fatima I, Qasim M, Liao M.
Identification of molecular mechanisms underlying the
therapeutic effects of Celosia cristata on immunoglobulin
nephropathy. Comput Biol Med. 2022; 151:
https://doi.org/10.1016/j.compbiomed.2022.106290
Zhang L, Han L, Wang X, Wei Y, Zheng J, Zhao L, Tong X.
Exploring the mechanisms underlying the therapeutic effect
of Salvia miltiorrhiza in diabetic nephropathy using network
pharmacology and molecular docking. Biosci Rep. 2021; 28:
(6).https://doi.org/10.1042/BSR20203520
Bilal MS, Ejaz SA, Zargar S, Akhtar N, Wani TA, Riaz N,
Aborode AT, Siddique F, Altwaijry N, Alkahtani HM, Umar
HI. Computational Investigation of 1, 3, 4 Oxadiazole
Derivatives as Lead Inhibitors of VEGFR 2 in Comparison
with EGFR: Density Functional Theory,Molecular Docking
and Molecular Dynamics Simulation Studies. Biomol. 2022;
(11):1612. https://doi.org/10.3390/biom12111612
Tanveer F, Anwar MF, Siraj B, Zarina S. Evaluation of anti‐
EGFR potential of quinazoline derivatives using molecular
docking: An in silico approach. Biotechnol Appl Biochem.
; 69(3): 1226-37. https://doi.org/10.1002/bab.2199
Zhang L, Jiang F, Chen Y, Luo J, Liu S, Zhang B, Ye Z,
Wang W, Liang X, Shi W. Necrostatin-1 attenuates ischemia
injury induced cell death in rat tubular cell line NRK-52E
through decreased Drp1 expression. Int J Mol Sci. 2013;
(12): 24742-54.https://doi.org/10.3390/ijms141224742
Sharma D, Gondaliya P, Tiwari V, Kalia K. Kaempferol
attenuates diabetic nephropathy by inhibiting RhoA/Rhokinase mediated inflammatory signaling. Biomed
Pharmacother. 2019; 109:1610-9.
https://doi.org/10.1016/j.biopha.2018.10.195
Arora S, Tandon C, Tandon S. Evaluation of the cytotoxic
effects of CAM therapies: an in vitro study in normal kidney
cell lines. Sci World J. 2014;
https://doi.org/10.1155/2014/452892
Kalshetti PB, Alluri R, Mohan V, Thakurdesai PA. Effects of
-hydroxyisoleucine from fenugreek seeds on depressionlike behaviour in socially isolated olfactory bulbectomized
rats. Pharmacogn Mag. 2015; 11(Suppl
:S388.https://doi.org/10.4103%2F0973-1296.168980
Prabhavathi H, Dasegowda KR, Renukananda KH,
Karunakar P, Lingaraju K, Raja Naika H. Molecular docking
and dynamic simulation to identify potential phytocompound
inhibitors for EGFR and HER2 as anti-breast cancer agents.
J Biomol Struct Dyn. 2022; 40(10):4713-24.
https://doi.org/10.1080/07391102.2020.1861982
Purawarga MGS, Dhiwar PS, Abbas N, Singh E, Ghara A,
Das A, Bhargava SV. Molecular docking and molecular
dynamic studies: screening of phytochemicals against EGFR,
HER2, estrogen and NF-KB receptors for their potential use
in breast cancer. J Biomol Struct Dyn. 2022; 40(13): 6183-
https://doi.org/10.1080/07391102.2021.1877823
Alreshidi M, Badraoui R, Adnan M, Patel M, Alotaibi A,
Saeed M, Ghandourah M, Al-Motair KA, Arif IA,
Albulaihed Y, Snoussi M. Phytochemical profiling,
antibacterial, and antibiofilm activities of Sargassum
sp.(brown algae) from the Red Sea: ADMET prediction and
molecular docking analysis. Alg Res. 2023; 69:102912.
https://doi.org/10.1016/j.algal.2022.102912
Gupta G, Chellappan DK, Kikuchi IS, Pinto TD, Pabreja K,
Agrawal M, Singh Y, Tiwari J, Dua K. Nephrotoxicity in rats
exposed to paracetamol: the protective role of
moralbosteroid, a steroidal glycoside. J Env Patho Toxi
Onco. 2017; 36(2): 113-119.
Sobolewska D, Michalska K, Podolak I, Grabowska K.
Steroidal saponins from the genus Allium. Phy Reviews.
; 15: 1-35. https://doi.org/10.1007/s11101-014-9381-1
Guo H, Zhang Q, Li R, Seshadri VD. Nigericin Abrogates
Maternal and Embryonic Oxidative Stress in the
Streptozotocin-Induced Diabetic Pregnant Rats. App
Biochem and Biotech. 2023; 195(2):801-
https://doi.org/10.1007/s12010-022-04100-6
Pandy V, Narasingam M, Kunasegaran T, Murugan DD,
Mohamed Z. Effect of noni (Morinda citrifolia Linn.) fruit
and its bioactive principles scopoletin and rutin on rat vas
deferens contractility: an ex vivo study. The Sci World J.
; 2014. https://doi.org/10.1155/2014/909586
Dembinska-Kiec A, Mykkänen O, Kiec-Wilk B, Mykkänen
H. Antioxidant phytochemicals against type 2 diabetes. Bri J
Nutri. 2008; 99(E-S1): ES109-
doi:10.1017/S000711450896579X
Huang M, He JX, Hu HX, Zhang K, Wang XN, Zhao BB,
Lou HX, Ren DM, Shen T. Withanolides from the genus
Physalis: a review on their phytochemical and
pharmacological aspects. J Pharma Pcology. 2020; 72(5):649
-69. https://doi.org/10.1111/jphp.13209
Fedina PA, Yashin AY, Chernousova NI. Amperometric
assay of antioxidants in foodstuffs of vegetable origin. Rus J
of Bioorg Chem. 2011; 37(7):899-904.