Antioxidant, Antiglycation, Inhibition of Digestive Enzymes and Enhanced Glucose Uptake Activities of Opuntia ficus indica L, In Vitro and In Vivo http://www.doi.org/10.26538/tjnpr/v7i7.13
Main Article Content
Abstract
Opuntia ficus indica L (Cactaceae), is commonly employed in Morocco as an alternative medicinal approach for managing diabetes mellitus (DM). The objective of the study is to explore and examine novel mechanism underlying the antidiabetic activity of Opuntia ficus indica seed oil (OFIO), which has shown promising potential in managing diabetes, but the exact mechanisms responsible for its antidiabetic effects remain unclear. Therefore, the current study explores the antihyperglycemic effectof OFIO, the in vitro antioxidant properties, and the antiglycation activity of OFIOof hemoglobin (Hb) model. The total phenolic levels were determined using Folin– Ciocalteu colorimetric approach and total flavonoid levels were determined using colorimetric assay with aluminum chloride. The effect of antihyperglycemia was evaluated using the inhibitory effect of pancreatic α-amylase activity both in vitro and in vivo using Alloxan induced-diabetic rats and the glucose uptake in an isolated rat hemidiaphragm in vitro model. The antioxidant
activity was studied using the DPPH Radical scavenging activity test. In addition, the antiglycation activity of OFIO was also tested in-vitro using hemoglobin model. The outcomes derived from this research have demonstrated that OFIO exhibited potent α-amylase inhibitory activity in vitro (p < 0.01; IC50 values of 4.24 ±0.18 mg/ml, and 4.05± 0.08 mg/ml respectively) and in vivo using
Alloxan induced-diabetic rats. In contrast, OFIO has no effect on glucose uptake by the rat diaphragm muscle as compared to negative control. In addition, OFIO showed a significant antioxidant and hemoglobin antiglycation activities (p<0.001) with an IC50 value of 2.05± 0.06 mg/ml, and 0.485± 0.017 mg/ml, respectively.The findings of this study suggest that is OFIO has promising antidiabetic activity.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocininduced oxidative stress and β-cell damage in rat pancreas. Pharmacol Res. 2005;51(2):117–23.
Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI. Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition. 2005;21(6):756–61.
Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff Jr DC. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care. 2004;27(3):699–703.
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence
estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes
Atlas, 9th edition. Diabetes Res Clin Pract [Internet]. 2019;157:107843. Available from: https://doi.org/10.1016/j.diabres.2019.107843
Bouhrim M, Ouassou H, Loukili E, Ramdani M, Mekhfi H, Ziyyat A, et al. Antidiabetic effect of Opuntia dillenii seed oil on streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed. 2019;9(9):381–8.
Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother [Internet]. 2018;107(July):306–28. Available from: https://doi.org/10.1016/j.biopha.2018.07.157
Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther. 2008;88(11):1322–35.
Goh S-Y, Cooper ME. The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab. 2008;93(4):1143–52.
Ouassou H, Bouhrim M, Bencheikh N, Addi M, Hano C, Mekhfi H, et al. In vitro antioxidant properties, glucosediffusion effects, α-amylase inhibitory activity, and antidiabetogenic effects of c. Europaea extracts in experimental animals. Antioxidants. 2021;10(11).
Frati AC, Jiménez E, Ariza CR. Hypoglycemic effect ofOpuntia ficus indica in non insulin dependent diabetes mellitus patients. Phyther Res. 1990;4(5):195–7.
López AD. Use of the fruits and stems of the prickly pear cactus (Opuntia spp.) into human food. Food Sci Technol Int. 1995;1(2–3):65–74.
Shoukat R, Cappai M, Pia G, Pilia L. An Updated Review: Opuntia ficus indica (OFI) Chemistry and Its Diverse Applications. Appl Sci. 2023;13(13):7724.
Kim J-H, Park S-M, Ha H-J, Moon C-J, Shin T-K, Kim J-M, et al. Opuntia ficus-indica attenuates neuronal injury in in vitro and in vivo models of cerebral ischemia. J Ethnopharmacol. 2006;104(1–2):257–62.
Hwang SH, Kang I-J, Lim SS. Antidiabetic effect of fresh nopal (Opuntia ficus-indica) in low-dose streptozotocininduced diabetic rats fed a high-fat diet. Evidence-Based Complement Altern Med. 2017;2017.
Antunes-Ricardo M, Moreno-García BE, Gutiérrez-Uribe JA, Aráiz-Hernández D, Alvarez MM, Serna-Saldivar SO. Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads. Plant Foods Hum Nutr. 2014;69(4):331–6.
Park E-H, Kahng J-H, Lee SH, Shin K-H. An antiinflammatory principle from cactus. Fitoterapia. 2001;72(3):288–90.
Godard MP, Ewing BA, Pischel I, Ziegler A, Benedek B, Feistel B. Acute blood glucose lowering effects and longterm safety of OpunDiaTM supplementation in pre-diabetic males and females. J Ethnopharmacol. 2010;130(3):631–4.
Ennouri M, Evelyne B, Laurence M, Hamadi A. Fatty acid composition and rheological behaviour of prickly pear seed
oils. Food Chem. 2005;93(3):431–7.
Hagerman AE. Extraction of tannin from fresh and preserved leaves. J Chem Ecol. 1988;14(2):453–61.
Ayoola GA, Ipav SS, Sofidiya MO, Adepoju-Bello AA, Coker HAB, Odugbemi TO. Phytochemical screening and free radical scavenging activities of the fruits and leaves of Allanblackia floribunda Oliv (Guttiferae). Int J Heal Res. 2008;1(2):87–93.
de la Rosa LA, Alvarez-Parrilla E, Shahidi F. Phenolic compounds and antioxidant activity of kernels and shells of
Mexican pecan (Carya illinoinensis). J Agric Food Chem. 2011;59(1):152–62.
Nair SS, Kavrekar V, Mishra A. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur J Exp Biol. 2013;3(1):128–32.
Thalapaneni NR, Chidambaram KA, Ellappan T, Sabapathi ML, Mandal SC. Inhibition of carbohydrate digestive enzymes by Talinum portulacifolium (Forssk) leaf extract. J Complement Integr Med. 2008;5(1).
Rafe MR. A review of five traditionally used anti-diabetic plants of Bangladesh and their pharmacological activities. Asian Pac J Trop Med. 2017;10(10):933–9.
Ouassou H, Bouhrim M, Kharchoufa L, Imtara H. Caralluma europaea ( Guss ) N . E .Br .: A review on ethnomedicinal uses , phytochemistry , pharmacological activities , and toxicology. J Ethnopharmacol [Internet]. 2021;273(October 2020):113769. Available from: https://doi.org/10.1016/j.jep.2020.113769
Omsland TK, Bangstad H-J, Berg TJ, Kolset SO. [Advanced glycation end products and hyperglycaemia]. Tidsskr Nor
Laegeforen [Internet]. 2006;126(2):155–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16415936
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010;4(8):118–26.
Berraaouan A. Contribution à l’étude de l’effet antidiabétique de l’huile des graines du figuier de barbarie (Opuntia ficus-indica L. Mill). 2015. p. 142.
Gkogkolou P, Böhm M. Advanced glycation end products: Key players in skin aging? Dermatoendocrinol. 2012;4(3):259–70.
Ho S-C, Wu S-P, Lin S-M, Tang Y-L. Comparison of antiglycation capacities of several herbal infusions with that of
green tea. Food Chem. 2010;122(3):768–74.
Rondeau P, Bourdon E. The glycation of albumin: structural and functional impacts. Biochimie. 2011;93(4):645–58.
Seneviratne C, Dombi GW, Liu W, Dain JA. In vitro glycation of human serum albumin by dihydroxyacetone and dihydroxyacetone phosphate. Biochem Biophys Res Commun. 2012;417(2):817–23.
Kaewnarin K, Niamsup H, Shank L, Rakariyatham N. Antioxidant and antiglycation activities of some edible and medicinal plants. Chiang Mai J Sci. 2014;41(1):105–16.
Yeh W-J, Hsia S-M, Lee W-H, Wu C-H. Polyphenols with antiglycation activity and mechanisms of action: A review of
recent findings. J food drug Anal. 2017;25(1):84–92.
Xiao J, Ni X, Kai G, Chen X. A review on structure-activity relationship of dietary polyphenols inhibiting α-amylase. Crit Rev Food Sci Nutr. 2013;53(5):497–506.
El-Mostafa K, El Kharrassi Y, Badreddine A, Andreoletti P, Vamecq J, El Kebbaj MS, et al. Nopal cactus (Opuntia ficusindica) as a source of bioactive compounds for nutrition, health and disease. Molecules. 2014;19(9):14879–901.
Berraaouan A, Abderrahim Z, Hassane M, Abdelkhaleq L, Mohammed A, Mohamed B. Evaluation of protective effect of cactus pear seed oil (Opuntia ficus-indica L. MILL.) against alloxan-induced diabetes in mice. Asian Pac J Trop Med. 2015;8(7):532–7.
Kamimura W, Doi W, Takemoto K, Ishihara K, Wang D-H, Sugiyama H, et al. Effect of vitamin E on alloxan-induced
mouse diabetes. Clin Biochem. 2013;46(9):795–8.
Wagner K-H, Kamal-Eldin A, Elmadfa I. Gammatocopherol–an underestimated vitamin? Ann Nutr Metab. 2004;48(3):169–88.