Optimization of Culture Conditions for Lipase Production by Pseudomonas aeruginosa ECS3

http://www.doi.org/10.26538/tjnpr/v7i6.27

Authors

  • Adefunke O. Ogunniran Department of Science Laboratory Technology, Faculty of Science, Ekiti State University, Ado-Ekiti, Ekiti
  • Bose O. Odeleye Department of Science Laboratory Technology, Faculty of Science, Ekiti State University, Ado-Ekiti, Ekiti
  • Titilayo O. Femi-Ola Department of Microbiology, Faculty of Science, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria

Keywords:

Pseudomonas aeruginosa ECS3, Optimization, Lipase, Isolation, Identification

Abstract

Lipases are hydrolytic enzymes with different biotechnological applications in food, detergents, pharmaceuticals, paper, and pulp industries. In lipase-producing bacteria, the encoding genes are responsible for enzyme synthesis. Optimization of medium parameters is an essential factor in the large-scale production of enzymes of biotechnological importance, and this served as the basis for this study. In this study, isolates ECS1, ECS3, ECS11, ECS14, ECS 19, ECS24, and ECS28 were screened for lipase production on tributyrin agar plates. The highest lipase-producing isolate was identified by sequencing the 16S rRNA region following a PCR procedure using a specific primer. The presence of the LipA gene in the isolate was confirmed by polymerase chain reaction (PCR) amplification of their specific primers. In addition, some physical and nutritional parameters were optimized for lipase production. On tributyrin agar plates, isolate ECS3 had the highest zone of hydrolysis (12mm) and was therefore selected. Based on the 16S rRNA sequencing, the highest lipase producer was identified as Pseudomonas aeruginosa ECS3. This study also ascertained the presence of the LipA gene in this bacterium with a positive band of 371 bp. Optimum activities were observed at pH (8), temperature (35oC), and incubation period (24 h). The activity of Pseudomonas aeruginosa ECS3 lipase was enhanced by yeast extract (0.5% w/v), lactose (0.5% w/v), agitation speed (120 rpm), and 1% substrate concentration. The study showed the influence of different culture conditions on lipase production by Pseudomonas aeruginosa ECS3 with the LipA encoding gene.

Author Biography

Adefunke O. Ogunniran, Department of Science Laboratory Technology, Faculty of Science, Ekiti State University, Ado-Ekiti, Ekiti

Department of Microbiology, Faculty of Science, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria

References

Moraleda-Muñoz A, Shimkets LJ. Lipolytic enzymes in Myxococcus xanthus. J. Bacteriol. 2007; 189(8):3072–80.

Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M, Afzal M, Kouser A, Nadeem H. Bacterial lipases: a review on purification and characterization. Prog Biophys Mol Biol. 2018; 132:23–34.

Ali S, Khan SA, Hamayun M, Lee I-J. The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms. 2023; 11(2):510.

https://doi.org/10.3390/microorganisms11020510

Singh R, Kumar M, Mittal A, Mehta PK. Microbial enzymes: Industrial progress in 21st century. 3 Biotech. 2016; 6:1–15. https://doi. org/10.1007/s13205-016-0485-8.

Ramnath L, Sithole B, Govinden R. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J. Microbiol. 2017; 63(3):179–192. https://doi.org/ 10.1139/cjm-2016-0447.

Ilesanmi OI, Adekunle AE, Omolaiye JA, Olorode EM, Ogunkanmi AL. Isolation, optimization, and molecular characterization of lipase-producing bacteria from contaminated soil. Sci Afr. 2020; 8:e00279. https://doi.org/10.1016/j.sciaf.2020.e00279.

Ahmed TMK. Detection lipase gene of Pseudomonas aeruginosa from crude oil contaminated soil IOP Conf Series: Earth and Environ Sci. 2021; 790:012051 https://doi.org/10.1088/1755-1315/790/1/012051.

Martínez A, Soberón-Chávez G. Characterization of the lipA gene encoding the major lipase from Pseudomonas aeruginosa strain IGB83. Appl Microbiol Biotechnol. 2001; 56:731–735. DOI 10.1007/s002530100724.

Laxman RS, Sonawane AP, More SV, Rao BS, Rele MV, Jogdand VV, Deshpande VV, Rao MB. Optimization and scale-up of production of alkaline protease from Conidiobolus coronatus. Process Biochem. 2005; 40:3152- 3158.

Hajji M, Rebai A, Gharsallah N, Nasir M. Optimization of alkaline proteases production by Aspergillus clavatus ES1 in Mirabilis Jalapa tuber powder using statistical experimental design. Appl. Microbiol Biotechnol. 2008; 79:915- 923. https://doi.org/ 10.1007/s00253-008-1508-0.

Sirisha E, Rajaseker N, Narasu ML. Isolation and optimization of lipase-producing bacteria from oilcontaminated soils. Adv Biol Res. 2010; 4:249-252.

Dashti AA, Jadaon MM, Abdulsamad AM, Dashti HM. Heat treatment of bacteria: A simple method of DNA extraction for molecular techniques, Kuwait Med J. 2009; 41:117-122.

Muhonja CN, Magoma G, Imbuga M, Makonde HM. Molecular characterization of low-density polyethylene (LDPE) degrading bacteria and fungi from Dandora dumpsite, Nairobi, Kenya. Int J. Microbiol. 2018; 4167845. https//doi.org/10.1155/2018/4167845.

Mir Mohammad Sadeghi H, Rabbani M, Moazen F, Homami S. Molecular detection of lipase A gene in putative Bacillus subtilis strains isolated from soil. Iran J. Biotechnol. 2010; 8:46-49.

Odeyemi AT, Ayantola KJ, Peter S. Molecular characterization of bacterial isolates and physicochemical assessment of well water samples from hostels at Osekita, Iworoko-Ekiti, Ekiti State. Am J. Microbiol Res. 2018; 6:22- 32. https://doi.org/10.12691/ajmr-6-1-4.

Mobarak-Qamsari E, Kasra-Kermanshahi R, Moosavi-Nejad Z. Isolation and identification of a novel, lipase-producing bacterium, Pseudomonas aeruginosa KM110. Iran J. Microbiol. 2011; 3:92-98.

Alami NH, Nasihah L, Umar RLA, Kuswytasari ND, Zulaika E, Shovitri M. Lipase production in lipolytic yeast from Wonorejo mangrove area. AIP Conf Proc. 2017; 1854:1-11. https://doi.org/10.1063/1.4985392.

Kamaladevi B, Prabhavathi P, Sankareswaran M, Anbalagan S, Radhakrishnan N, Prabhu D. Screening and medium optimization of lipase producing bacteria from Saltpan. Res J. Chem Environ Sci. 2014; 2:72-77.

Devi CS, Mohanasrinivasan V, Chetna M, Nikhil AS, Naine SJ. Thermostable lipase from novel Pseudomonas sp. VITSDVM1 isolated from bovine milk. Front Life Sci. 2015; 8(2):165–171.

Rawway M, Taha TM, Eltokhey A, Abdul-Raouf U. M. Optimization, partial purification and characterization of halo-thermophilic alkaline protease from moderately halophilic bacterium AH10 isolated from Alexandria (Egypt). Int J. Curr Microbiol Appl Sci. 2015; 4(11):304- 317.

Pogaku P, Fan W, Suresh A, Zhong S, Srinivas P, Reddy RS, Ma C, Li P, Zhou K, Peng Z, Zhu M. Optimization of lipase production by Staphylococcus sp. Lp 12. Afr J. Biotechnol. 2010; 9(6):882-886.

Veerapagu M, Narayanan AS, Ponmurugan K, Jeya KR. Screening, selection identification production, and optimization of bacterial lipase from oil-spilled soil. Asian J. Pharm Clin Res. 2013; 6(3):62-67.

Jamilu H, Ibrahim AH, Abdullahi SZ. Isolation, optimization, and characterization of lipase-producing bacteria from abattoir soil. Int J. Sci Adv. 2022; 3:75-82. https://doi.org/10.51542/ijscia.v3i1.9.

Popoola BM, Olateru CT. Purification and kinetics of lipase of Pseudomonas fluorescens from vegetable oil polluted soil. J. Biol Sci. 2021; 21:29-37.

https://doi.org/10.3923/jbs.2021.29.37.

Ezema BO, Omeje KO, Bill RM, Goddard AD, Eze SOO,Fernandez-Castane A. Bioinformatic characterization of a triacylglycerol lipase produced by Aspergillus flavus isolated from the decaying seed of Cucumeropsis mannii. J. Biomol Struct Dyn. 2022; 1-15. https://doi.org/10.1080/07391102.2022.2035821.

Ali AA, Hameed KW, Nadder MI. Isolation of Pseudomonas aeruginosa from soil and production of lipase enzyme. IOP Conf. Ser.: Earth Environ Sci. 2022; 961:1-11. https://doi.org/10.1088/1755-1315/961/1/012087.

Amin M, Bhatti HN, Sadaf S, Bilal M. Optimization of lipase production by response surface methodology and its application for efficient biodegradation of polyester vylon-200. Catal Lett. 2021; 151(12): 3603+.https://doi.org/10.1007/s10562-021-03603-x.

Barik A, Sen SK, Rajhans G, Raut S. Purification and optimization of extracellular lipase from a novel strain Kocuria flava Y4. Int J. Anal Chem. 2022; 6403090. https://doi.org/10.1155/2022/6403090.

Osho B, Alabi MA. Biodegradation potential of tropical hydrocarbon degrading Providencia stuartii. Trends Appl Sci Res. 2020; 15:253-259.

https://doi.org/10.3923/tasr.2020.253.259.

Ruparelia J, Soni R, Manthan Kapuria M. Isolation, Screening and optimization of lipase producing Staphylococcus spp. from oil mill soil. Res Rev Biotechnol Biosci. 2022; 9(1):44.55. https://doi.org/10.5281/zenodo.6619115.

Demirkan E, Aybey Çetinkaya A, Abdou M. Lipase from new isolate Bacillus cereus ATA179: optimization of production conditions, partial purification, characterization and its potential in the detergent industry. Turk J. Biol. 2021: 45:287-300. https://doi.org/10.3906/biy-2101-22.

Abol-Fotouh D, AlHagar OEA, Hassan MA. (2021). Optimization, purification, and biochemical characterization of thermoalkaliphilic lipase from a novel Geobacillus stearothermophilus FMR12 for detergent formulations. Int J. Biol Macromol. 2021; 181: 125–135. https://doi.org/10.1016/j.ijbiomac.2021.03.111.

Patil U, Chaudhari A. Production of alkaline protease by solvent-tolerant alkaliphilic Bacillus circulans MTCC 7942 isolated from hydrocarbon contaminated habitat: Process parameters optimization. ISRN Biochem. 2013; 942590. https://doi.org/10.1155/2013/942590.

Akhter K, Karim I, Aziz B, Bibi A, Khan J, Akhtar T. Optimization and characterization of alkaliphilic lipase from a novel Bacillus cereus NC7401 strain isolated from diesel fuel polluted soil. PLoS one. 2022; 17(8):e0273368. https://doi.org/10.1371/journal.pone.0273368.

Salwoom L, Raja Abd Rahman RNZ, Salleh AB, Mohd Shariff F, Convey P, Pearce D, Ali MS. Isolation, Characterisation, and Lipase Production of a Cold-Adapted Bacterial Strain Pseudomonas sp. LSK25 Isolated from Signy Island, Antarctica. Molecules. 2019; 24(4):715. https://doi.org/10.3390/molecules24040715/

Pham VHT, Kim J, Chang S, Chung W. Investigation of lipolytic-secreting bacteria from an artificially polluted soil using a modified culture method and optimization of their lipase production. Microorganisms. 2021; 9(12):2590 https://doi.org/10.3390/microorganisms9122590.

Khusro A. One factor at a time-based optimization of protease from poultry associated Bacillus licheniformis. J. Appl Pharm Sci. 2016; 6:88–95.

https://doi.org/10.7324/JAPS.2016.60315.

Al-Dhumri SA, Bayoumi RA. Bacterial hyperthermostable alkaline lipase production by B. stearothermophilus isolated from oil-polluted soil. Int J. Adv Res Biol Sci. 2018; 6:166- 184. http://dx.doi.org/10.22192/ijarbs.2019.06.02.019.

Oni IO, Faeji CO, Fasoro AA, Kukoyi O, Akingbade AM. Optimization of amylase and lipase enzymes produced by Bacillus cereus and Bacillus subtilis isolated from waste dumpsites. J. Appl Nat Sci. 2022; 14(3):978-984. https://doi.org/10.31018/jans.v14i3.3754.

Imandi SB, Karanam SK, Garapati HR. Use of placketBurman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid-state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus). Braz J. Microbiol. 2013; 44:915–921. https://doi.org/10.1590/s1517-83822013005000068.

Park H, McGill SL, Arnold AD, Carlson RP. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell Mol Life Sci. 2020; 77(3):395–413. https://doi.org/10.1007/s00018-019- 03377-x.

Thongpoo P. Isolation and optimization of lipase-producing bacteria from oil-contaminated soils. ASEAN J. Sci Technol Rep. 2021; 24(2):38-

https://doi.org/10.55164/ajstr.v24i2.242336. 43. Savalia HJ, Dungrechiya A. Identification and optimization study of lipase-producing bacteria isolated from municipal waste and bio-deteriorated waste. J. Pure Appl Microbiol. 2022; 16(4):2592-2600. https://doi.org/10.22207/JPAM.16.4.27.

Szymczak T, Cybulska J, Podles'ny M, Fra˛c M. Various perspectives on microbial lipase production using agri-food waste and renewable products. Agriculture. 2021; 11(6):540. https://doi.org/10.3390/agriculture11060540.

Hermansyah H, Maresya A, Putri DN, Sahlan M, Meyer M. Production of dry extract lipase from Pseudomonas aeruginosa by the submerged fermentation method in palm oil mill effluent. Int J. Technol. 2018; 9:325–334. https://doi.org/10.14716/ijtech.v9i2.1511.

Thakur V, Tewari R, Sharma R. Evaluation of production parameters for maximum lipase production by P. stutzeri MTCC 5618 and scale-up bioreactor. Chin J. Biol. 2014; 208462. https://doi.org/10.1155/2014/208462.

Mandepudi B, Mandepudi D, Ghanta VC. Optimization of media parameters for the enhanced production and activity of lipase by bacterial lipase isolates. Int J. Biol Sci Technol. 2012; 4:23-29.

Shamim S, Mehboob S, Ali I, Shabbir A, Khan M, Ashraf M, Malik A. Thermostable acidic lipase of Bacillus glycinifermentans-MK840989 isolated from contaminated environment; its optimization, purification and exploring potential applications. MOJ Ecol Environ Sci. 2020; 5:100‒ 107. https://doi.org/10.15406/mojes.2020.05.00181.

Ces´ario LM, Pires GP, Pereira RFS, Fantuzzi E, da Silva Xavier A, Cassini STA, de Oliveira JP. Optimization of lipase production using fungal isolates from oily residues. BMC Biotechnol. 2021; 21:1–13, https://doi.org/10.1186/S12896-021- 00724-4/FIGURES/7.

Suci M, Arbianti R, Hermansyah H. Lipase production from Bacillus subtilis with submerged fermentation using waste cooking oil. In: IOP Conf Ser: Earth Environ Sci 2018; 12126. https:// doi.org/10.1088/1755-1315/105/1/012126.

Hassan SWM, Abd El Latif HH, Ali SM. Production of coldactive lipase by free and immobilized marine Bacillus cereus HSS: application in wastewater treatment. Front Microbiol. 2018; 9:1-13.

Rajesh EM, Arthe R, Rajendran R, Balakumav C, Pradeepa N, Anitha S. Investigation of lipase production by Trichoderma reesei and optimization of production parameters. Elec J. Env Agricult Food Chem. 2010; 9:1177- 1189.

Russi AE, Brown MA. The Meninges: New therapeutic targets for multiple sclerosis. HHS Public Access Transl Res. 2016; 165:255–269.

Published

2023-07-02

How to Cite

Ogunniran, A. O., Odeleye, B. O., & Femi-Ola, T. O. (2023). Optimization of Culture Conditions for Lipase Production by Pseudomonas aeruginosa ECS3: http://www.doi.org/10.26538/tjnpr/v7i6.27. Tropical Journal of Natural Product Research (TJNPR), 7(6), 3240–3245. Retrieved from https://tjnpr.org/index.php/home/article/view/2111