Effect of Solvent Extraction on Antityrosinase and Sun Protection Factor of Mulberry (Morus alba L.) Cultivated in Wajo, Indonesia http://www.doi.org/10.26538/tjnpr/v7i6.7
Main Article Content
Abstract
Mulberry (Morus alba L.) is commonly used as a silkworm feed and a medicinal herb in Indonesia. There has not been much research on mulberry leaf pharmacological activities influenced by different planting places, whether because of different soil characteristics or other environmental factors such as ecology. This study aimed to investigate the effect of solvent extraction on antityrosinase and sun protection factor (SPF) of the mulberry leaves grown in Wajo, South Sulawesi, Indonesia. This study separately used different solvent extraction methods (96% ethanol, hexane, ethyl acetate, chloroform, and butanol). Antityrosinase was investigated in vitro assays, while UV spectrophotometry was used to measure the UV absorption, and the Mansur equation was applied to obtain the final SPF. The result showed that 96% ethanol extract presented the most potent to inhibit tyrosinase (IC50 35.03±0.16 µg/mL) followed by butanol (IC50 159.26±2.19 µg/mL), chloroform (IC50 234.51±22.14 µg/mL), ethyl acetate (IC50 283.76±3.65 µg/mL) and hexane (523.97±54.73 µg/mL). Our finding also suggested that butanol extract has the highest SPF value of 12. 84±0. 55 (high protection category) at 750 µg/mL. Overall, the experimental results revealed that mulberry significantly inhibits hyperpigmentation-related
tyrosinase and sun protection, indicating that they might be used as bioactive metabolites in cosmetic and medicinal formulations to combat skin hyperpigmentation.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Johnson R. European cloth and "tropical" skin: Clothing material and British ideas of health and hygiene in tropical climates. Bull Hist Med. 2009;83(3):530-560.
Mendes MM, Hart KH, Botelho PB, Lanham-New SA. Vitamin D status in the tropics: Is sunlight exposure the main determinant? Nutr Bull. 2018;43(4):428-434.
Chai W-M, Huang Q, Lin M-Z, Ou-Yang C, Huang W-Y, Wang Y-X, Xu K-L, Feng H-L. Condensed tannins from longan bark as inhibitor of tyrosinase: Structure, activity, and mechanism. J Agric Food Chem. 2018;66(4):908-917.
Xu H, Li X, Xin X, Mo L, Zou Y, Zhao G, Yu Y, Chen K. Antityrosinase mechanism and antimelanogenic effect of arbutin esters synthesis catalyzed by whole-cell biocatalyst. J Agric Food Chem. 2021;69(14):4243-4252.
Sari PKN, Zulkarnain AK, Lukitaningsih E. Evaluation of the Physical Properties and Anti-aging Microemulgel Sunscreen Nyamplung Oil (Calophyllum inophyllumL.). Trop J Nat Prod Res. 2022;7(2):2414-2420.
Ngoc LTN, Tran VV, Moon J-Y, Chae M, Park D, Lee Y-C. Recent trends of sunscreen cosmetic: An update review. Cosmetics. 2019;6(4):e64.
Young AR, Claveau J, Rossi AB. Ultraviolet radiation and the skin: Photobiology and sunscreen photoprotection. J Am Acad Dermatol. 2017;76(3s1):S100-S109.
Chaiyana W, Sirithunyalug J, Somwongin S, Punyoyai C, Laothaweerungsawat N, Marsup P, Neimkhum W, Yawootti A. Enhancement of the antioxidant, anti-tyrosinase, and antihyaluronidase activity of morus alba l. Leaf extract by pulsed electric field extraction. Molecules. 2020;25(9):e2212.
Chang LW, Juang LJ, Wang BS, Wang MY, Tai HM, Hung WJ, Chen YJ, Huang MH. Antioxidant and antityrosinase activity of mulberry (Morus alba L.) twigs and root bark. Food Chem Toxicol. 2011;49(4):785-790.
Ryu M-J. Inhibitory effect of Morus alba extracts on tyrosinase activity and melanogenesis in sk-mel-2 cells. Kor J Aesthet Cosmetol. 2011;9(4):1-12.
Lee SH, Choi SY, Kim H, Hwang JS, Lee BG, Gao JJ, Kim SY. Mulberroside F isolated from the leaves of Morus albainhibits melanin biosynthesis. Biol Pharm Bull. 2002;25(8):1045-1048.
Liu X, Rao J, Wang K, Wang M, Yao T, Qiu F. Highly potent inhibition of tyrosinase by mulberrosides and the inhibitory mechanism in vitro. Chem Biodiversity. 2022;19(1):e202100740.
Xu D-P, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li H-B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int J Mol Sci. 2017;18(1):e96.
Liu W, Wang D, Hou X, Yang Y, Xue X, Jia Q, Zhang L, Zhao W, Yin D. Effects of growing location on the contents of main active components and antioxidant activity of Dasiphora fruticosa (L.) Rydb. by chemometric methods. Chem Biodiversity. 2018;15(7):e1800114.
Indrisari M, Sartini S, Miskad UA, Djawad K, Amir Tahir K, Nurkhairi N, Muslimin L. Photoprotective and inhibitory activity of tyrosinase in extract and fractions of Terminalia catappa L. Open Access Maced J Med Sci. 2021;9(A):263-270.
Zarkogianni M, Nikolaidis N. Determination of sun protection factor (SPF) and stability of oil-in-water emulsions containing greek red saffron (Crocus sativus L.) as a main antisolar agent. Int J Adv Res Chem Sc. 2016;3(7):1-7.
Jamal J, Kadek NGA, Wulandari AS, Musnina WOS, Widodo A. Effect of solvent type and temperature variation on yield and quality parameters of oil extracted fromeel fish (Anguilla marmorata [Q.] Gaimard) using soxhletation method. Trop J Nat Prod Res. 2021;5(9):1537-1541.
Henkel S, Misuraca MC, Troselj P, Davidson J, Hunter CA. Polarisation effects on the solvation properties of alcohols. Chem Sci. 2018;9(1):88-99.
Thavamoney N, Sivanadian L, Tee LH, Khoo HE, Prasad KN, Kong KW. Extraction and recovery of phytochemical components and antioxidative properties in fruit parts of Dacryodes rostrata influenced by different solvents. J Food Sci Technol. 2018;55(7):2523-2532.
Tiago FJ, Paiva A, Matias AA, Duarte ARC. Extraction of bioactive compounds from Cannabis sativa L. flowers and/or leaves using deep eutectic solvents. Front Nutr. 2022;9:e892314.
Mohsen-Nia M, Amiri H, Jazi B. Dielectric constants of water, methanol, ethanol, butanol and acetone: Measurement and computational study. J Solution Chem. 2010;39(5):701-708.
Sarkar R, Arora P, Garg KV. Cosmeceuticals for hyperpigmentation: What is available? J Cutan Aesthet Surg. 2013;6(1):4-11.
Rathee P, Kumar S, Kumar D, Kumari B, Yadav SS. Skin hyperpigmentation and its treatment with herbs: An alternative method. Futur J Pharm Sci. 2021;7(1):e132.
Li HX, Park JU, Su XD, Kim KT, Kang JS, Kim YR, Kim YH, Yang SY. Identification of anti-melanogenesis constituents from Morus alba L. leaves. Molecules. 2018;23(10):e2559.
Wang Y, Zhang G, Yan J, Gong D. Inhibitory effect of morin on tyrosinase: Insights from spectroscopic and molecular docking studies. Food Chem. 2014;163:226-233.
Farasat A, Ghorbani M, Gheib N, Shariatifar H. In silico assessment of the inhibitory effect of four flavonoids (chrysin, naringin, quercetin, kaempferol) on tyrosinase activity using the MD simulation approach. BioTechnologia. 2020;101(3):193-204.
Simunkova M, Barbierikova Z, Jomova K, Hudecova L, Lauro P, Alwasel SH, Alhazza I, Rhodes CJ, Valko M. Antioxidant vs. prooxidant properties of the flavonoid, kaempferol, in the presence of Cu(II) ions: A ROS-scavenging activity, fenton reaction and DNA damage study. Int J Mol Sci. 2021;22(4):e1619.
Tang H, Yang L, Wu L, Wang H, Chen K, Wu H, Li Y. Kaempferol, the melanogenic component of Sanguisorbaofficinalis, enhances dendricity and melanosome maturation/transport in melanocytes. J Pharmacol Sci. 2021;147(4):348-357.
Faizatun, Anwar E, Djajadisasra J, Mardliyati E. The study of antioxidant and antityrosinase activity of extract from mulberry root (Morus alba L.). Department of Pharmacy, University of Indonesia. 2017; Thesis.
Faizatun F, Asto S. In vitro determination of sun protection factors on ethanol extract and nanostructured lipid carrierbased gel extract of mulberry root (Morus alba L.). Asian J Pharm Clin Res. 2018;11(1):138-140.