Euonymus laxiflorus Champ. Bioactive Compounds Inhibited α-Glucosidase and Protein Phosphatase 1B – A Computational Approach Towards the Discovery of Antidiabetic Drugs

http://www.doi.org/10.26538/tjnpr/v7i5.21

Authors

  • Phan T. Quy Department of Natural Sciences & Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
  • Thanh Q. Bui Department of Chemistry, University of Sciences, Hue University, Hue 530000, Vietnam
  • Nguyen V. Bon Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
  • Phan T. K. Phung Faculty of Medicine and Pharmacy, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
  • Duong P.N. Duc Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
  • Dang T. Nhan Faculty of Forestry Agriculture, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
  • Nguyen V. Phu Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University, Hue 530000, Vietnam
  • Dao C. To Phenikaa University Nano Institute (PHENA), Phenikaa University, Yen Nghia, Ha Dong district, Hanoi 12116, Vietnam
  • Nguyen T. A. Nhung Department of Chemistry, University of Sciences, Hue University, Hue 530000, Vietnam

Keywords:

ADMET, QSARIS, molecular docking simulation, quantum chemical calculation, Euonymus laxiflorus, Celastraceae

Abstract

Euonymus laxiflorus Champ. has recently proven for its antidiabetic potential yet its ingredientactivity relationship is vastly unknown. A combination of quantum calculation, molecular docking simulation, physicochemical analysis, and ADMET was utilised together for the theoretical argument on potentiality of bioactively undetermined components (1-15) against α-glucosidase (PDB-3W37) and tyrosine phosphatase 1B (UniProtKB-PTP1B). Dipole moment values indicate the favoured bio-medium compatibility of 10 (6.370 Debye), 12 (6.381 Debye), and 15 (8.446 Debye), while the values discourage the potential of 5 (0.792 Debye) and 11 (0.905 Debye). Molecular electrostatic potential maps imply the intermolecular interacting flexibility of 6-10 and 12-15. Docking-based simulation predicts the most effective inhibitory systems, i.e. (i) ligand- 3W37: 10 ≈ 11 (DS -11.7 kcal.mol-1) ≈ 3 (DS -11.6 kcal.mol-1) > 7 ≈ 12 (DS -11.1 kcal.mol-1); (ii) ligand-PTP1B: 11 (DS -12.0 kcal.mol-1) > 13 (DS -11.8 kcal.mol-1) > 5 (DS -11.2 kcal.mol-1) > 3 (DS -11.0 kcal.mol-1). Polarisability justifies the bio-medium compatibility of 10 (70.8 Å3) and 15 (64.7 Å3) while especially opposes the potentiality of 11 (19.1 Å3). Physicochemical and pharmacological properties support the suitability for further drug-like development. Altogether, 10 (7-Hydroxy-6,7-dihydro-cis/trans-geraniate, 3-O-α-L-arabinopyranosyl (1→6)-β-Dglucupyranosyl) and 15 (3,5-dimethoxy-4-hydroxyphenol)-1-O-β-D-(6'-O-galloyl)- glucopyranoside) are allocated as the most promising antidiabetic inhibitors.

Author Biography

Phan T. K. Phung, Faculty of Medicine and Pharmacy, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam

Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam

References

Abraira C, Colwell JA, Nuttall FQ, Sawin CT, Nagel NJ, Comstock JP, Emanuele N V, Levin SR, Henderson W, Lee HS. Veterans Affairs Cooperative Study on glycemic control and complications in type II diabetes (VA CSDM): results of the feasibility trial. Diabetes Care. 1995;18(8):1113–23.

Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Furuyoshi N, Shichiri M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with noninsulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28(2):103–17.

Klein R, Klein BEK, Moss SE, Cruickshanks KJ. Relationship of hyperglycemia to the long-term incidence and progression of diabetic retinopathy. Arch Intern Med. 1994;154(19):2169–78.

Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11(11):1185.

Sandholm N, Forsblom C. Genetics of Diabetic Microvascular Disease. Microvasc Dis Diabetes. 2020;23– 44.

Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, Freeman R, Green J, Huang E, Isaacs D, Kahan S. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022;45(Supplement_1):S17–38.

Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018;14(6):491–509.

Holman RR, Cull CA, Turner RC. A randomized doubleblind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (UK Prospective Diabetes Study 44). Diabetes Care. 1999;22(6):960–4.

Lebovitz HE. Alpha-glucosidase inhibitors. Endocrinol Metab Clin North Am. 1997;26(3):539–51.

Vieira MNN, Lyra e Silva NM, Ferreira ST, De Felice FG. Protein tyrosine phosphatase 1B (PTP1B): a potential target for Alzheimer’s therapy? Front Aging Neurosci. 2017;9(7):Article ID 28197094.

Özil M, Emirik M, Etlik SY, Ülker S, Kahveci B. A simple and efficient synthesis of novel inhibitors of alphaglucosidase based on enzimidazole skeleton and molecular docking studies. Bioorg Chem. 2016;68:226–35.

Nikookar H, Mohammadi-Khanaposhtani M, Imanparast S, Faramarzi MA, Ranjbar PR, Mahdavi M, Larijani B. Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano [3, 2-c] quinoline derivatives as potential anti-diabetic agents. Bioorg Chem. 2018;77:280–6.

Adelusi TI, Boyenle ID, Tolulope A, Adebisi J, Fatoki JO, Ukachi CD, Oyedele AQK, Ayoola AM, Timothy AA. GCMS fingerprints and phenolic extracts of Allium sativum inhibit key enzymes associated with type 2 diabetes. J Taibah Univ Med Sci. 2023;18(2):337.

Nguyen QV, Nguyen NH, Wang SL, Nguyen VB, Nguyen AD. Free radical scavenging and antidiabetic activities of Euonymus laxiflorus Champ. extract. Res Chem Intermed. 2017;43:5615–24.

Nguyen VB, Wang SL, Nguyen AD, Lin ZH, Doan CT, Tran TN, Huang HT, Kuo YH. Bioactivity-guided purification of novel herbal antioxidant and anti-NO compounds from Euonymus laxiflorus Champ. Molecules. 2018;24(1):120.

Kuo YH, Huang HC, Chiou WF, Shi LS, Wu TS, Wu YC. A Novel NO-Production-Inhibiting Triterpene and Cytotoxicity of Known Alkaloids from Euonymus l axiflorus. J Nat Prod. 2003;66(4):554–7.

Nguyen VB, Nguyen QV, Nguyen AD, Wang SL. Screening and evaluation of α-glucosidase inhibitors from indigenous medicinal plants in Dak Lak Province, Vietnam. Res Chem Intermed. 2017;43:3599–612.

Nguyen VB, Wang SL, Nguyen TH, Nguyen MT, Doan CT, Tran TN, Lin ZH, Nguyen QV, Kuo YH, Nguyen AD. Novel potent hypoglycemic compounds from Euonymus laxiflorus Champ. and their effect on reducing plasma glucose in an ICR mouse model. Molecules. 018;23(8):1928.

Nguyen VB, Wang SL, Nguyen AD, Vo TPK, Zhang LJ, Nguyen QV, Kuo YH. Isolation and identification of novel α-amylase inhibitors from Euonymus laxiflorus Champ. Res Chem Intermed. 2018;44:1411–24.

Fan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol. 2019;7(2):83–9.

Kapetanovic IM. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem Biol Interact. 2008;171(2):165–76.

Thao TTP, Bui TQ, Quy PT, Bao NC, Van Loc T, Van Chien T, Chi NL, Van Tuan N, Van Sung T, Nhung NTA. Isolation, semi-synthesis, docking-based prediction, and bioassaybased activity of Dolichandrone spathacea iridoids: new catalpol derivatives as glucosidase inhibitors. RSC Adv.

;11:11959–75.

Thi T, Thao P, Bui TQ, Thi N, Hai T, Huynh LK, Quy PT, Bao NC, Dung NT, Chi NL, Loc T Van, Smirnova IE, Petrova A V, Ninh PT, Sung T Van, Thi N, Nhung A. Newly synthesised oxime and lactone derivatives from Dipterocarpus alatus dipterocarpol as anti- diabetic inhibitors: experimental bioassay-based evidence and theoretical computation-based prediction. RSC Adv. 2021;11:35765–82.

Adelusi TI, Abdul-Hammed M, Idris MO, Kehinde OQ, Boyenle ID, Divine UC, Adedotun IO, Folorunsho AA, Kolawole OE. Exploring the inhibitory potentials of Momordica charantia bioactive compounds against Keap1- Kelch protein using computational approaches. Silico

Pharmacol. 2021;9(1):39.

Adelusi TI, Abdul-Hammed M, Idris MO, Oyedele QK, Adedotun IO. Molecular dynamics, quantum mechanics and docking studies of some Keap1 inhibitors–An insight into the atomistic mechanisms of their antioxidant potential. Heliyon. 2021;7(6):e07317.

Adelusi TI, Oyedele AQK, Monday OE, Boyenle ID, Idris MO, Ogunlana AT, Ayoola AM, Fatoki JO, Kolawole OE, David KB. Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations. J Mol Struct. 2022;1250:131879.

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci.

Markovi ZS, Dimitri JM. Mechanistic study of the structure – activity relationship for the free radical scavenging activity of baicalein. J Mol Model. 2011;17:2575–84.

Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys. 2005;7(18):3297–305.

Molecular Operating Environment (MOE), 2015.02 Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2015.

Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron. 1980;36(22):3219–28.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.

Ahsan MJ, Samy JG, Khalilullah H, Nomani MS, Saraswat P, Gaur R, Singh A. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorganic Med Chem Lett. 2011;21(24):7246–50.

Mazumdera J, Chakraborty R, Sena S, Vadrab S, Dec B, Ravi TK. Synthesis and biological evaluation of some novel quinoxalinyl triazole derivatives. Der Pharma Chem. 2009;1(2):188–98.

Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58(9):4066–72.

Rad AS, Ardjmand M, Esfahani MR, Khodashenas B. DFT calculations towards the geometry optimization, electronic structure, infrared spectroscopy and UV–vis analyses of Favipiravir adsorption on the first-row transition metals doped fullerenes; a new strategy for COVID-19 therapy. Spectrochim Acta Part A Mol Biomol Spectrosc. 2021;247:Article ID 119082.

Feynman R. The Feynman lectures on physics - Volume II. Millenium. Gottlieb MA, editor. New York: Basic Books; 2010; 11.3.

Published

2023-06-01

How to Cite

Quy, P. T., Bui, T. Q., Bon, N. V., Phung, P. T. K., Duc, D. P., Nhan, D. T., … Nhung, N. T. A. (2023). Euonymus laxiflorus Champ. Bioactive Compounds Inhibited α-Glucosidase and Protein Phosphatase 1B – A Computational Approach Towards the Discovery of Antidiabetic Drugs: http://www.doi.org/10.26538/tjnpr/v7i5.21. Tropical Journal of Natural Product Research (TJNPR), 7(5), 2974–2991. Retrieved from https://tjnpr.org/index.php/home/article/view/1977

Most read articles by the same author(s)