Optimizing the Synthesis of Silver Nanoparticles Using Five Curcuma Species under UV Irradiation as a Potent Suncreen Substrate http://www.doi.org/10.26538/tjnpr/v7i5.13
Main Article Content
Abstract
Curcuma rhizome is reported to have a high total phenolics that could act as reducing agents for metals to nanoparticles. Rhizomes of five curcuma species were selected as bioreductors, namely white turmeric (Curcuma zedoaria), black turmeric (C. aeruginosa), fingerroot (C. rotunda), temu giring (C. heyneana), and mango ginger (C. amada). The research was designed to select the reductor from five Curcuma rhizomes mentioned above for silver nanoparticles synthesis, optimizing the synthesis condition, and evaluating its potential as a sunscreen agent. Silver nanoparticles (AgNPs) were synthesized by mixing the extracts with AgNO3 and irradiating the
solution under a 366 nm UV lamp at certain times and pHs. Based on the spectra, the highest absorbance of silver nanoparticles was detected on the temu kunci extract. The optimum conditions for silver nanoparticle-temu kunci (AgNPs-TK) were determined using a Box-Behnken Design and Minitab. Statistical results showed that 0.13 g of silver nitrate irradiated for 162.7 min at pH 11.34 was the optimum condition for AgNPs synthesis. The synthesized AgNPs were characterized by PSA/DLS, XRD, and TEM. The TEM analysis confirmed that silver particles are spherical. The size of the AgNPs produced based on TEM analysis is 5–50 nm. Sunlight inhibition
activity, determined spectrophotometrically, indicated that the sun protection factor of AgNPs-TK is categorized as a minimum protection in concentration of 25 ppm.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Laurent S, Forge D, Port M, Roch A, Robic C, vander Elst L, Muller RN. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations and Biological Applications. Chem Rev. 2008; 108: 2064–2110. Doi: 10.1021/cr068445e.
Khan I, Saeed K, Khan I. Nanoparticles: Properties, Applications and Toxicities. Arabian Journal of Chemistry. 2019; 12: 908–931, Doi: 10.1016/j.arabjc.2017.05.011.
Masum MI, Siddiqa MM, Ali KA, Zhang Y, Abdallah Y, Ibrahim E, Qiu W, Yan C, Li B. Biogenic Synthesis of Silver Nanoparticles Using Phyllanthus Emblicafruit Extract and Its Inhibitory Action against the Pathogen Acidovorax Oryzaestrain RS-2 of Rice Bacterial Brown Stripe. Front Microbiol. 2019; 10, Doi: 10.3389/fmicb.2019.00820.
Shah MZ., Guan ZH, Din AU, Ali A, Rehman AU, Jan K, Faisal S, Saud S, Adnan M, Wahid F et al. Synthesis of Silver Nanoparticles Using Plantago Lanceolata Extract and Assessing Their Antibacterial and Antioxidant Activities. Sci Rep. 2021; 11, Doi: 10.1038/s41598-021-00296-5.
Sreelekha E, George B, Shyam A, Sajina N, Mathew BA. Comparative Study on the Synthesis, Characterization, and Antioxidant Activity of Green and Chemically Synthesized Silver Nanoparticles. Bionanoscience. 2021; 11: 489–496, Doi: 10.1007/s12668-021-00824-7.
Krithiga N, Rajalakshmi A, Jayachitra A. Green Synthesis of Silver Nanoparticles Using Leaf Extracts of Clitoria Ternatea and Solanum Nigrum and Study of Its Antibacterial Effect against Common Nosocomial Pathogens . Journal of Nanoscience. 2015; 2015: 1–8, Doi: 10.1155/2015/928204.
Barabadi H, Mojab F, Vahidi H, Marashi B, Talank N, Hosseini O, Saravanan M. Green Synthesis, Characterization, Antibacterial and Biofilm Inhibitory Activity of Silver Nanoparticles Compared to Commercial Silver Nanoparticles. Inorg Chem Commun. 2021; 129, Doi:
1016/j.inoche.2021.108647.
Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in Cancer Diagnosis: Progress, Challenges and Opportunities. J Hematol Oncol. 2019; 12: 1–13, Doi: 10.1186/s13045-019- 0833-3.
Narayanan M, Divya S, Natarajan D, Senthil-Nathan S, Kandasamy S, Chinnathambi A, Alahmadi TA, Pugazhendhi A. Green Synthesis of Silver Nanoparticles from Aqueous Extract of Ctenolepis Garcini L. and Assess Their Possible Biological Applications. Process Biochemistry. 2021; 107: 91–99, Doi: 10.1016/j.procbio.2021.05.008.
Wei S, Wang Y, Tang Z, Xu H, Wang Z, Yang T, Zou T. A Novel Green Synthesis of Silver Nanoparticles by the Residues of Chinese Herbal Medicine and Their Biological Activities. RSC Adv. 2021; 11: 1411–1419, Doi: 10.1039/d0ra08287b.
Mallmann EJJ, Cunha FA, Castro BNMF, Maciel AM, Menezes EA, Fechine PBA. Atividade Antifúngica de Nanopartículas de Prata Obtidas Por Síntese Verde. Rev Inst Med Trop Sao Paulo. 2015; 57: 165–167, Doi: 10.1590/S0036-46652015000200011.
Oves M, Ahmar Rauf M, Aslam M, Qari HA, Sonbol H, Ahmad I, Sarwar Zaman G, Saeed M. Green Synthesis of Silver Nanoparticles by Conocarpus Lancifolius Plant Extract and Their Antimicrobial and Anticancer Activities. Saudi J Biol Sci. 2022; 29: 460–471. Doi:
1016/j.sjbs.2021.09.007.
Awad MA, al Olayan EM, Siddiqui MI, Merghani NM, Alsaif SSA llah, Aloufi AS. Antileishmanial Effect of Silver Nanoparticles: Green Synthesis, Characterization, in Vivo and in Vitro Assessment. Biomedicine and Pharmacotherapy. 2021; 137. Doi:10.1016/j.biopha.2021.111294.
Mehwish HM, Rajoka MSR, Xiong Y, Cai H, Aadil RM, Mahmood Q, He Z, Zhu Q. Green Synthesis of a Silver Nanoparticle Using Moringa Oleifera Seed and Its Applications for Antimicrobial and Sun-Light Mediated Photocatalytic Water Detoxification. J Environ Chem Eng. 2021; 9. Doi: 10.1016/j.jece.2021.105290.
Zamarchi F, Vieira IC. Determination of Paracetamol Using a Sensor Based on Green Synthesis of Silver Nanoparticles in Plant Extract. J Pharm Biomed Anal. 2021; 196. Doi: 10.1016/j.jpba.2021.113912.
Chinnasamy G, Chandrasekharan S, Koh TW, Bhatnagar S. Synthesis, Characterization, Antibacterial and Wound Healing Efficacy of Silver Nanoparticles From Azadirachta Indica. Front Microbiol. 2021; 12. Doi: 10.3389/fmicb.2021.611560.
Iravani S, Korbekandi H, Mirmohammadi S v, Zolfaghari B. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods, Res Pharm Sci. 2014; 9: 385–406. https://pubmed.ncbi.nlm.nih.gov/26339255.
Liu YC, Lin LH. New Pathway for the Synthesis of Ultrafine Silver Nanoparticles from Bulk Silver Substrates in Aqueous Solutions by Sonoelectrochemical Methods. Electrochem commun. 2004; 6: 1163–1168, Doi: 10.1016/j.elecom.2004.09.010.
Solanki JN, Murthy ZVP. Highly Monodisperse and SubNano Silver Particles Synthesis via Microemulsion Technique. Colloids Surf A Physicochem Eng Asp. 2010; 359: 31–38. Doi: 10.1016/j.colsurfa.2010.01.058.
Jara N, Milán NS, Rahman A, Mouheb L, Boffito DC, Jeffryes C, Dahoumane SA. Photochemical Synthesis of Gold and Silver Nanoparticles-a Review. Molecules; 2021: 26. Doi: 10.3390/molecules26154585.
Wang B, Zhuang X, Deng W, Cheng B. Microwave-Assisted Synthesis of Silver Nanoparticles in Alkalic Carboxymethyl Chitosan Solution. Engineering. 2010; 02: 387–390. Doi: 10.4236/eng.2010.25050.
Filip GA, Moldovan B, Baldea I, Olteanu D, Suharoschi R, Decea N, Cismaru CM, Gal E, Cenariu M, Clichici S, et al. UV-Light Mediated Green Synthesis of Silver and Gold Nanoparticles Using Cornelian Cherry Fruit Extract and Their Comparative Effects in Experimental Inflammation. J
Photochem Photobiol B. 2019; 191: 26–37. Doi: 10.1016/j.jphotobiol.2018.12.006.
Huang L, Zhai ML, Long, DW, Peng J, Xu L, Wu GZ, Li JQ, Wei GS. UV-Induced Synthesis, Characterization and Formation Mechanism of Silver Nanoparticles in Alkalic Carboxymethylated Chitosan Solution. Journal of Nanoparticle Research. 2008; 10: 1193–1202. Doi: 10.1007/s11051-007-9353-0.
Ho YY, Sun DS, Chang HH. Silver Nanoparticles Protect Skin from Ultraviolet B-Induced Damage in Mice. Int J Mol Sci. 2020; 21: 1–11. Doi: 10.3390/ijms21197082.
Palanki R, Arora S, Tyagi N, Rusu L, Singh AP, Palanki S, Carter JE, Singh S. Size Is an Essential Parameter in Governing the UVB-Protective Efficacy of Silver Nanoparticles in Human Keratinocytes. BMC Cancer. 2015; 15: 1–7. Doi: 10.1186/s12885-015-1644-8.
Halilu EM, Ngweh VA, Airemwen CO. Green Synthesis of Silver Nanoparticles from Parinari curatellifolia Methanol Stem Bark Extract and Evaluation of Antioxidant and Antimicrobial Activities. Trop. J. Nat. Prod. Res. 2023; 7(3):2498–2505
Ahmed S, Ahmad M, Swami BL, Ikram S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J Adv Res. 2016; 7: 17–28. Doi: 10.1016/j.jare.2015.02.007.
Tarannum N, Divya, Gautam YK. Facile Green Synthesis and Applications of Silver Nanoparticles: A State-of-the-Art Review. RSC Adv. 2019; 9: 34926–34948. Doi: 10.1039/c9ra04164h.
Ewon K, Bhagya AS. A Review on Golden Species of Zingiberaceae Family around the World: Genus Curcuma. Afr J Agric Res. 2019; 14: 519–531. Doi: 10.5897/ajar2018.13755.
Gul P, Bakht J. Antimicrobial Activity of Turmeric Extract and Its Potential Use in Food Industry. J Food Sci Technol. 2015; 52: 2272–2279. Doi: 10.1007/s13197-013-1195-4.
Dairaku I, Han Y, Yanaka N, Kato N. Inhibitory Effect of Curcumin on IMP Dehydrogenase, the Target for Anticancer and Antiviral Chemotherapy Agents. Biosci Biotechnol Biochem. 2010; 74: 185–187. Doi: 10.1271/bbb.90568.
Khandelwal RSUP, Reddy AHM. An Antifungal Agent in Plant Tissue Culture Studies. International Journal of Engineering Science and Technology. 2011; 3: 7899–7904. https://www.researchgate.net/publication/302997674
Patra D, el Kurdi R. Curcumin as a Novel Reducing and Stabilizing Agent for the Green Synthesis of Metallic Nanoparticles. Green Chem Lett Rev. 2021; 14: 474–487. Doi: 10.1080/17518253.2021.1941306.
Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lin M. Green Synthesis of Silver Nanoparticles Using Turmeric Extracts and Investigation of Their Antibacterial Activities. Colloids Surf B Biointerfaces. 2018; 171:398–405. Doi: 10.1016/j.colsurfb.2018.07.059.
Dutra EA, da Costa E Oliveira DAG, Kedor-Hackmann ERM, Miritello Santoro MIR. Determination of Sun Protection Factor (SPF) of Sunscreens by Ultraviolet Spectrophotometry. Revista Brasileira de Ciencias Farmaceuticas/Brazilian Journal of Pharmaceutical Sciences.2004; 40: 381–385. Doi: 10.1590/S1516- 93322004000300014.
Zeng Y, Hu R, Wang L, Gu D, He J, Wu SY, Ho HP, Li X, Qu J, Gao BZ, et al. Recent Advances in Surface Plasmon Resonance Imaging: Detection Speed, Sensitivity, and Portability. Nanophotonics. 2017; 6: 1017–1030. Doi: 10.1515/nanoph-2017-0022.
Oyagi MO, Michira IN, Guto P, Baker PGL, Kamau G, Iwuoha I. Polydisperse Low Diameter ‘Non-Toxic’ Silver Nanoparticles Encapsulated by Rooibos Tea Templates. Nano Hybrids. 2014; 8: 57–72. Doi: 10.4028/www.scientific.net/nh.8.57.
Arshad H, Sami MA, Sadaf S, Hassan U. Salvadora Persica Mediated Synthesis of Silver Nanoparticles and Their Antimicrobial Efficacy. Sci Rep. 2021; 11, Doi: 10.1038/s41598-021-85584-w.
Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of Silver Nanoparticles by Green Synthesis Method Using Pedalium Murex Leaf Extract and Their Antibacterial Activity. Applied Nanoscience (Switzerland). 2016; 6: 399–408. Doi: 10.1007/s13204-015-0449-z.
Aravinthan A, Govarthanan M, Selvam K, Praburaman L, Selvankumar T, Balamurugan R, Kamala-Kannan S, Kim JH. Sunroot Mediated Synthesis and Characterization of Silver Nanoparticles and Evaluation of Its Antibacterial and Rat Splenocyte Cytotoxic Effects. Int J Nanomedicine. 2015; 10: 1977–1983. Doi: 10.2147/IJN.S79106.
Selvam K, Sudhakar C, Govarthanan M, Thiyagarajan P, Sengottaiyan A, Senthilkumar B, Selvankumar T. EcoFriendly Biosynthesis and Characterization of Silver Nanoparticles Using Tinospora Cordifolia (Thunb.) Miers and Evaluate Its Antibacterial, Antioxidant Potential. J Radiat Res Appl Sci. 2017; 10: 6–12. Doi: 10.1016/j.jrras.2016.02.005.
Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R. A Global Approach of the Mechanism Involved in the Biosynthesis of Gold Colloids Using MicroAlgae. Journal of Nanoparticle Research. 2014; 16: 1–12. Doi: 10.1007/s11051-014-2607-8.
Azmi SNH, Al-Jassasi BMH, Al-Sawafi HMS, Al-Shukaili SHG, Rahman N, Nasir M. Optimization for Synthesis of Silver Nanoparticles through Response Surface Methodology Using Leaf Extract of Boswellia Sacra and Its Application in Antimicrobial Activity. Environ Monit Assess. 2021; 193. Doi: 10.1007/s10661-021-09301-w.
Ibrahim S, Ahmad Z, Manzoor MZ, Mujahid M, Faheem Z, Adnan A. Optimization for Biogenic Microbial Synthesis of Silver Nanoparticles through Response Surface Methodology, Characterization, Their Antimicrobial, Antioxidant, and Catalytic Potential. Sci Rep. 2021; 11. Doi:
1038/s41598-020-80805-0.
Czyrski A, Sznura J. The Application of Box-BehnkenDesign in the Optimization of HPLC Separation of Fluoroquinolones. Sci Rep. 2019; 9: 1–10. Doi: 10.1038/s41598-019-55761-z.
Mathew S, Prakash A, Radhakrishnan EK. SunlightMediated Rapid Synthesis of Small Size Range Silver Nanoparticles Using Zingiber Officinale Rhizome Extract and Its Antibacterial Activity Analysis. Inorganic and NanoMetal Chemistry. 2018; 48: 139–145. Doi: 10.1080/24701556.2017.1373295.
Sakamoto M, Fujistuka M, Majima T. Light as a Construction Tool of Metal Nanoparticles: Synthesis and Mechanism. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2009; 10: 33–56. Doi: 10.1016/j.jphotochemrev.2008.11.002.
Darroudi M, Ahmad MB, Zak AK, Zamiri R, Hakimi M. Fabrication and Characterization of Gelatin Stabilized Silver Nanoparticles under UV-Light. Int J Mol Sci. 2011; 12: 6346–6356. Doi: 10.3390/ijms12096346.
Shet A, Shetty KV. Photocatalytic Degradation of Phenol Using Ag Core-TiO2 Shell (Ag@TiO2) Nanoparticles under UV Light Irradiation. Environmental Science and Pollution Research. 2016; 23: 20055–20064. Doi: 10.1007/s11356- 015-5579-z.
Kamat P v, Flumiani M, Hartland G v. Picosecond Dynamics of Silver Nanoclusters. Photoejection of Electrons and Fragmentation. Journal of Physical Chemistry B. 1998; 102: 3123–3128. Doi: 10.1021/jp980009b.
Kuthirummal N, Dean A, Yao C, Risen W. Photo-Formation of Gold Nanoparticles: Photoacoustic Studies on Solid Monoliths of Au(III)-Chitosan-Silica Aerogels. Spectrochim Acta A Mol Biomol Spectrosc. 2008; 70: 700–703. Doi: 10.1016/j.saa.2007.09.011.
Ahmad N, Ang BC, Amalina MA, Bong CW. Influence of Precursor Concentration and Temperature on the Formation of Nanosilver in Chemical Reduction Method. Sains Malays. 2018; 47: 157–168. Doi: 10.17576/jsm-2018-4701-19.
Ball RC, Weitz DA, Witten TA, Leyvraz F. Universal Kinetics in Reaction-Limited Aggregation. Phys Rev Lett. 1987; 58: 274–277. Doi: 10.1103/PhysRevLett.58.274.
Traiwatcharanon P, Timsorn K, Wongchoosuk C. Flexible Room-Temperature Resistive Humidity Sensor Based on Silver Nanoparticles. Mater Res Express. 2017; 4. Doi: 10.1088/2053-1591/aa85b6.
Sun L, Zhang Z, Dang H. A Novel Method for Preparation of Silver Nanoparticles. Mater Lett. 2003; 57: 3874–3879. Doi: 10.1016/S0167-577X(03)00232-5.
Meléndrez MF, Cárdenas G, Arbiol J. Synthesis and Characterization of Gallium Colloidal Nanoparticles. J Colloid Interface Sci. 2010; 346: 279–287. Doi: 10.1016/j.jcis.2009.11.069.
Garg S, Rong H, Miller CJ, Waite TD. Oxidative Dissolution of Silver Nanoparticles by Chlorine: Implications to Silver Nanoparticle Fate and Toxicity. Environ Sci Technol. 2016; 50: 3890–3896. Doi: 10.1021/acs.est.6b00037.
Tyagi N, Srivastava SK, Arora S, Omar Y, Ijaz ZM, ALGhadhban A, Deshmukh SK, Carter JE, Singh AP, Singh S. Comparative Analysis of the Relative Potential of Silver, Zinc-Oxide and Titanium-Dioxide Nanoparticles against UVB-Induced DNA Damage for the Prevention of Skin
Carcinogenesis. Cancer Lett. 2016; 383: 53–61. Doi: 10.1016/j.canlet.2016.09.026.
Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver Nanoparticles as a Safe Preservative for Use in Cosmetics. Nanomedicine. 2010; 6: 570–574. Doi: 10.1016/j.nano.2009.12.002.
Yang SI, Liu S, Brooks GJ, Lanctot Y, Gruber J v. Reliable and Simple Spectrophotometric Determination of Sun Protection Factor: A Case Study Using Organic UV FilterBased Sunscreen Products. J Cosmet Dermatol. 2018; 17: 518–522. Doi: 10.1111/jocd.12390