Phytochemical Screening, Antioxidant Activity and α‐Glucosidase Inhibitability of Bauhinia  blakeana Dunn Leaf and Flower Extracts from Vietnam http://www.doi.org/10.26538/tjnpr/v7i4.11

Main Article Content

Chen V. Tran
Tham M. Vo
Phong T. Bui
Duc N.P. Duong
Lam X.N. Duong
Diep Q. Dinh
Hien T.T. Nguyen

Abstract

Bauhinia blakeana Dunn is traditionally used as vegetables, medicinal herbs to treat diseases, and ornamental trees. The current study was performed to evaluate the phytochemicals, total phenolic (TPC) and total flavonoid (TFC) contents, antioxidant activity, and α‐glucosidase inhibitability of Bblakeana leaf and flower from Vietnam. Qualitative phytochemical analysis showed positive results for carbohydrates, organic acids, carotenoids, steroids, cardiac glycosides, triterpenoids, saponins, flavonoids, and tannins. The TPC and TFC obtained from Bblakeana leaf were 99.81 ± 0.94 (mg GAE/g E) and 114.93 ± 1.06 (mg RE/g E), respectively, whereas they were 40.45 ± 0.50 (mg GAE/g E) and 59.61 ± 0.85 (mg RE/g E) from Bblakeana The DPPH radical scavenging capacity assay of the crude ethanolic extracts of Bblakeana leaf (IC50 = 266.52 ± 1.03 μg/mL; R2 = 0.9864) and flower (IC50 > 1000 μg/mL) was determined. The leaf and flower extracts showed significant α-glucosidase inhibitory activity with IC50 values of 61.88 ± 0.19 μg/mL (R2 = 0.9838), 190.79 ± 0.18μg/mL (R2 = 0.9891), respectively. These results indicated that the extract of Bblakeana leaf and flower can be a promising candidate for alternative drug or functional food discovery, and nutritional recommendations for the control of oxidative stress and diabetes.

Article Details

How to Cite
Tran, C. V., Vo, T. M., Bui, P. T., Duong, D. N., Duong, L. X., Dinh, D. Q., & Nguyen, H. T. (2023). Phytochemical Screening, Antioxidant Activity and α‐Glucosidase Inhibitability of Bauhinia  blakeana Dunn Leaf and Flower Extracts from Vietnam: http://www.doi.org/10.26538/tjnpr/v7i4.11. Tropical Journal of Natural Product Research (TJNPR), 7(4), 2737-2743. https://tjnpr.org/index.php/home/article/view/1876
Section
Articles

References

Tanabe S, O’Brien J, Tollefsen KE, Kim Y, Chauhan V, Yauk C, FitzGerald R. Reactive Oxygen Species in the Adverse Outcome Pathway Framework: Toward Creation of Harmonized Consensus Key Events. Front Toxicol. 2022;4:887135. doi: 10.3389/ftox.2022.887135.

Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020;2020(13):1057-1073. doi: 10.2147/JIR.S275595.

Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, Reddy PH. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic Biol Med. 2022;184:114-134.

ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Gabbay RA. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care; 2023, 46(Supplement_1): S19-S40. doi:10.2337/dc23-S002.

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Magliano DJ. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.

Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, Shan PF. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10(1):1-11. doi: 10.1038/s41598-020-71908-9.

Yamagishi S, Nakamura K, Takeuchi M. Inhibition of postprandial hyperglycemia by acarbose is a promising therapeutic strategy for the treatment of patients with the metabolic syndrome. Med Hypotheses. 2005;65(1):152-154. doi: 10.1016/j.mehy.2004.12.008.

Hedrington MS, Davis SN. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin Pharmacother. 2019;20(18):2229-2235. doi: 10.1080/14656566.2019.1672660.

Altay M. Acarbose is again on the stage. World J Diabetes. 2022;13(1):1-4. doi: 10.4239/wjd.v13.i1.1.

McIver LA, Preuss CV, Tripp J. 2022. Acarbose. [Updated 2022 Sep 21]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK493214/.

Jiang LL, Xu XH, Luo MH, Wang HY, Ding B, Yan RN, Ma JH. Association of Acarbose with Decreased Muscle Mass and Function in Patients with Type 2 Diabetes: A Retrospective, Cross-Sectional Study. Diabetes Ther. 2021;12(11):2955-2969. doi: 10.1007/s13300-021-01151-6.

McKinley BJ, Santiago M, Pak C, Nguyen N, Zhong Q. Pneumatosis Intestinalis Induced by Alpha-Glucosidase Inhibitors in Patients with diabetes Mellitus. J Clin Med. 2022;11(19):5918. doi: 10.3390/jcm11195918.

Li M, Bao X, Zhang X, Ren H, Cai S, Hu X, Yi J. Exploring the phytochemicals and inhibitory effects against α-glucosidase and dipeptidyl peptidase-IV in Chinese pickled chili pepper: Insights into mechanisms by molecular docking analysis. LWT. 2022;162:113467. doi:

1016/j.lwt.2022.113467.

Rashid F, Javaid A, Mahmood-Ur-Rahman, Ashfaq UA, Sufyan M, Alshammari A, Alharbi M, Khurshid M. Integrating Pharmacological and Computational Approaches for the Phytochemical Analysis of Syzygium cumini and Its Anti-Diabetic Potential. Molecules. 2022;27(17):5734. doi: 10.3390/molecules27175734.

Khare P, Kishore K, Sharma DK. Historical aspects, medicinal uses, phytochemistry and pharmacological review of Bauhinia variegate. Asian J Pharm Pharmacol. 2018;4(5):546-562. doi: 10.31024/ajpp.2018.4.5.3.

POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. [Online]. 2022. [cited 2022 Oct 20]. Bauhinia Plum. ex L. Available from:https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:327181-2.

Gu S, Lai Q, Zeng Q, Tu T, Zhang D. The complete plastid genome of Hong Kong Orchid Tree, Bauhinia×blakeana Dunn (Leguminosae). Mitochondrial DNA Part B. 2019;4(2):3454-3455. doi: 10.1080/23802359.2019.1674218.

Zheng R, Su S, Xiao H, Tian H. Polysaccharides and lipids in the developing anthers of Hong Kong orchid tree (Bauhinia blakeana). Trees. 2017;31(4):1295–1301. doi: 10.1007/s00468-017-1548-0.

Verma S, Mohanta T, Revathy T, Suthindhiran K, Jayasri MA. Phytochemical and Pharmacological Evaluation of Selected Plants. Am J Biochem Biotechnol. 2013;9(3):291-299. doi: 10.3844/ajbbsp.2013.291.299.

Jinaan SK, Udhayavani S, Ayesha SB. A review on pharmacological activities of Bauhinia variegata and Bauhinia purpurae. W J Phar Res. 2020;10(1):203-218. doi: 10.20959/wjpr20211-19346.

Reveny J, Hetty Maha HL, Laila L. A Comparative Study of Phytochemical Screening and DPPH Radical Scavenging Activity of Ficus carica Linn. Leaves Extracts. Trop J NatProd Res. 2023;7(2):2337-2340. doi:10.26538/tjnpr/v7i2.5.

Falodun A, Uzoekwe AS, Shengxiang Q. Phytochemical, Anticancer and Antioxidant Evaluation of Potential Chemical Consituents of Calliandria Surinamensis. Nig J Biotech. 2010;21:55-59.

Hossain MS, Niloy SA, Hosen A, Islam MAU, Islam Z, Das S, Rana MS. Antioxidant activities and HPLC-DAD based phenolic content determination of Bauhinia scandens. J Pharm Res Int. 2016;14(6):1-9. doi: 10.9734/BJPR/2016/31817.

Sohemat AA, Atrooz OM, Farah HS. Evaluation of the AntiInflammatory, Antioxidant, and Protease Inhibitory Activity of the Crude Methanol Extract of Portulaca oleracea L. Trop J Nat Prod Res. 2023;7(2):2397-2401. doi:10.26538/tjnpr/v7i2.15.

Van Chen T, Cuong TD, Quy PT, Bui TQ, Van Tuan L, Van Hue N, Nhung NTA. Antioxidant activity and α-glucosidase inhibitability of Distichochlamys citrea M.F. Newman rhizome fractionated extracts: in vitro and in silico screenings. Chem Pap. 2022;1-21. doi: 10.1007/s11696-022-02273-2.

Caleja C, Ribeiro A, Filomena Barreiro M, CFR Ferreira I. Phenolic compounds as nutraceuticals or functional food ingredients. Curr Pharm Des. 2017;23(19):2787-2806. doi: 10.2174/1381612822666161227153906.

Durazzo A, Lucarini M, Souto EB, Cicala C, Caiazzo E, Izzo AA, Santini A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother Res. 2019;33(9):2221-2243. doi: 10.1002/ptr.6419.

Albuquerque BR, Heleno SA, Oliveira MBP, Barros L, Ferreira IC. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021;12(1):14-29. doi: 10.1039/D0FO02324H.

Ugwuoke CE, Nnadi CO, Omeje EO, Osadebe PO. Phytochemical Analysis and Antioxidant Activity of Stem Bark Extract and Fractions of Pycnanthus angolensis Myristicaceae (Welw) Warb. Trop J Nat Prod Res. 2022; 6(10):1733-1736. doi:10.26538/tjnpr/v6i10.30.

Suksathan R, Rachkeeree A, Puangpradab R, Kantadoung K, Sommano SR. Phytochemical and nutritional compositions and antioxidants properties of wild edible flowers as sources of new tea formulations. NFS Journal. 2021;24:15-25. doi: 10.1016/j.nfs.2021.06.001.

Mark R, Lyu X, Lee JJ, Parra-Saldívar R, Chen WN. Sustainable production of natural phenolics for functional food applications. J Functional Foods. 2019;57:233-254. doi: 10.1016/j.jff.2019.04.008.

Ferreres F, Gil-Izquierdo A, Vinholes J, Silva ST, Valentão P, Andrade PB. Bauhinia forficata Link authenticity using flavonoids profile: Relation with their biological properties. Food Chem. 2012;134 (2):894-904. doi: 10.1016/j.foodchem.2012.02.201.

Farag MA, Sakna ST, El-Fiky NM, Shabana MM, Wessjohann LA. Phytochemical, antioxidant and antidiabetic evaluation of eight Bauhinia L. species from Egypt using UHPLC–PDA–qTOF-MS and chemometrics. Phytochem. 2015;119:41-50. doi: 10.1016/j.phytochem.2015.09.004.

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. doi: 10.1017/jns.2016.41.

Ekalu A, Habila JD. Flavonoids: isolation, characterization, and health benefits. Beni-Suef Univ J Basic Appl Sci. 2020;9(1):1-14. doi: 10.1186/s43088-020-00065-9.

Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules. 2020;25(22):5243. doi: 10.3390/molecules25225243.

Matos AL, Bruno DF, Ambrósio AF, Santos PF. The benefits of flavonoids in diabetic retinopathy. Nutrients. 2020;12(10):3169. doi: 10.3390/nu12103169.

Farha AK, Yang QQ, Kim G, Li HB, Zhu F, Liu HY, Corke H. Tannins as an alternative to antibiotics. Food Biosci. 2020;38:100751. doi: 10.1016/j.fbio.2020.100751.

Sharma K, Kumar V, Kaur J, Tanwar B, Goyal A, Sharma R, Kumar A. Health effects, sources, utilization and safety of tannins: A critical review. Toxin Rev. 2021;40(4):432-444. doi: 10.1080/15569543.2019.1662813.

Adamczak A, Ożarowski M, Karpiński TM. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J Clin Med. 2019;9(1):109. doi: 10.3390/jcm9010109.

Liu Q, Tang GY, Zhao CN, Gan RY, Li HB. Antioxidant activities, phenolic profiles, and organic acid contents of fruit vinegars. Antioxidants. 2019;8(4):78. doi: 10.3390/antiox8040078.

Marimuthu K, Dhanalakshmi R. A study on phytochemicals in Bauhinia purpurea L. leaf and flower. Int J Pharm Sci Rev Res. 2014;29(2):72-76.

Dongray A, Irrchariya DR, Chanchal D, Chaudhary S. Phytochemical and pharmacological properties of Bauhinia acuminata. W J Phar Res. 2015;5(1):531-546.

Villavicencio AL, Heleno SA, Calhelha RC, Santos-Buelga C, Barros L, Ferreira IC. The influence of electron beam radiation in the nutritional value, chemical composition and bioactivities of edible flowers of Bauhinia variegata L. var. candida alba Buch.-Ham from Brazil. Food Chem.

;241:163-170. doi:10.1016/j.foodchem.2017.08.093.

Palsikowski PA, Besen LM, Klein EJ, da Silva C, da Silva EA. Optimization of ultrasound‐assisted extraction of bioactive compounds from B. forficata subsp. pruinosa. Can J Chem Eng. 2020;98(10):2214-2226. doi: 10.1002/cjce.23757.

Uddin G, Sattar S, Rauf A. Preliminary phytochemical, in vitro pharmacological study of Bauhinia alba and Bauhinia variegata flowers. Middle-East J Med Pl Res. 2012;1(4):75-79. doi: 10.5829/idosi.mejmpr.2011.1.4.1117.

Aliyu AB, Ibrahim MA, Musa AM, Ibrahim H, Abdulkadir IE, Oyewale AO. Evaluation of antioxidant activity of leave extract of Bauhinia rufescens Lam. (Caesalpiniaceae). J Med Plant Res. 2009;3(8):563-567.

Promprom W, Chatan W. GC-MS Analysis and antioxidant activity of Bauhinia nakhonphanomensis leaf ethanolic extract. Pharmacogn J. 2017;9(5):663-667. doi: 10.5530/pj.2017.5.105.

Anh VTT, Trang DTX, Kamei K, Linh TC, Pham-Khanh NH, Tuan NT, Danh LT. Phytochemicals, Antioxidant and Antidiabetic Activities of Extracts from Miliusa velutina Flowers. Horticulturae. 2021;7(12):555. doi: 10.3390/horticulturae7120555.

Dedvisitsakul P, Watla-Iad K. Antioxidant activity and antidiabetic activities of Northern Thai indigenous edible plant extracts and their phytochemical constituents. Heliyon. 2022;8(9):e10740. doi: 10.1016/j.heliyon.2022.e10740.

Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants. 2019;8(4):96. doi: 10.3390/plants8040096.

Zakaria ZA, Rofiee MS, Teh LK, Salleh MZ, Sulaiman MR, Somchit MN. Bauhinia purpurea leaves’ extracts exhibited in vitro antiproliferative and antioxidant activities. Afr J Biotechnol. 2011;10(1):65-74. doi: 10.5897/AJB10.1354.

Abou Baker DH. An ethnopharmacological review on the therapeutical properties of flavonoids and their mechanisms of actions: A comprehensive review based on up to date knowledge. Tox Rep. 2022;9:445-469. doi: 10.1016/j.toxrep.2022.03.011.

Mohan S, Nandhakumar L. Role of various flavonoids: Hypotheses on novel approach to treat diabetes. J Med Hypoth Ideas. 2014;8(1):1-6. doi: 10.1016/j.jmhi.2013.06.001.

He C, Liu X, Jiang Z, Geng S, Ma H, Liu B. Interaction mechanism of flavonoids and α-glucosidase: Experimental nd molecular modelling studies. Foods. 2019;8(9):355. doi: 10.3390/foods8090355.

Amaral S, Mira L, Nogueira J MF, da Silva AP, Florêncio MH. Plant extracts with anti-inflammatory properties-A new approach for characterization of their bioactive compounds and establishment of structure–antioxidant activity relationships. Bioorg Med Chem. 2009;17(5):1876–1883.

Proença C, Freitas M, Ribeiro D, Oliveira EF, Sousa JL, Tome SM, Fernandes E. α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. J Enzyme Inhib Med Chem. 2017;32(1):1216-1228. doi: 10.1080/14756366.2017.1368503.