Chemical Elucidation, Microbial Growth and Free Radical Inhibitory Effects of Dennettia tripetala Fruit: In vitro and In vivo Model Experiments http://www.doi.org/10.26538/tjnpr/v7i3.25

Main Article Content

Ayeni Gideon
Larayetan A. Rotimi
Yahaya Abdulrazaq
Emmanuel T. Friday
Onoja A. David
Falola O. Oladunni
Bello A. Onimisi
Ogundipe Emmanuel

Abstract

Natural products are being exploited in the treatment of diverse ailments stemming from microbial and free radical incursion in the African native societies. The current study was designed to elucidate the bioactive constituents, microbial growth and free radical inhibitory effects of Dennettia tripetalafruit, employing in vitro and in vivo models. Briefly, phytochemical analysis was qualitatively investigated. The free radical scavenging assays using 2,2-diphenyl-1- picrylhdrazyl (DPPH) and 2,2’-azino-bis (3-ethylenzoline-6-sulfonic acid (ABTS) radical solutions using vitamin C as reference antioxidant. Antibacterial activity was carried out using agar diffusion well. Bioactive elucidation was conducted using Gas chromatography Mass Spectroscopy (GC-MS). Liver protective effect of the extract was investigated on rats’ model. Phytochemical analysis of the crude extracts (hexane and ethanol) revealed saponins, tannin, flavonoid, steroids, phenols and terpenoids. GC-MS analysis revealed various bioactive
compounds. DPPH inhibitory effect of the hexane and ethanol extracts, displayed IC50 values, 3.86 and 4.01 µg/mL against a corresponding vitamin C (IC50 value, 0.007 µg/mL). Both extracts solution scavenged ABTS radical (IC50 values, 4.53 and 4.79 µg/mL) against vitamin C (IC50 values, 0.005 µg/mL). The extracts demonstrated promising antibacterial activities against eight selected multidrug-resistant strains, comprising Gram positive and negative strains. The crude extract protects liver induced carbontetrachloride toxic onslaught through significant (p <0.05) increased in the catalase, superoxide dismutase activities, reduced glutathione and depleted malonedialdehyde levels in the rats’ liver co-treatment groups. Overall, the findings suggest D. tripetela’s leaf extract a promising antidote for the treatment of free radical and microbial , infectious diseases. 

Article Details

How to Cite
Gideon, A., Rotimi, L. A., Abdulrazaq, Y., Friday, E. T., David, O. A., Oladunni, F. O., Onimisi, B. A., & Emmanuel, O. (2023). Chemical Elucidation, Microbial Growth and Free Radical Inhibitory Effects of Dennettia tripetala Fruit: In vitro and In vivo Model Experiments: http://www.doi.org/10.26538/tjnpr/v7i3.25. Tropical Journal of Natural Product Research (TJNPR), 7(3), 2631-2641. https://tjnpr.org/index.php/home/article/view/1787
Section
Articles
Author Biographies

Larayetan A. Rotimi, Department of Pure and Industrial Chemistry, Prince Abubakar Audu University, PMB 1008, Anyigba, Nigeria

Department of Pure and Industrial Chemistry University of Fort Hare, Alice 5700, South Africa

Yahaya Abdulrazaq, Department of Pure and Industrial Chemistry, Prince Abubakar Audu University, PMB 1008, Anyigba, Nigeria

Department of Pure and Industrial Chemistry University of Fort Hare, Alice 5700, South Africa

References

dedapo AA, Jimoh FO, Koduru S, Afolayan AJ, Masika PJ. Antibacterial and antioxidant properties of the methanol

extracts of the leaves and stems of Calpurnia aurea. BMC Complement Altern Med. 2008; 8(1):1–8.

Neethu Simon K, Santhoshkumar R, Neethu SK. Phytochemical analysis and antimicrobial activities of Annona squamosa (L) leaf extracts. J Pharmacogn Phytochem. 2016; 5(4):128–31.

Palombo EA. Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: modes of action and effects on intestinal function. Phyther Res An Int J Devoted to Pharmacol Toxicol Eval Nat Prod Deriv. 2006; 20(9):717–24.

Iwu MM. Introduction: Therapeutic agents from ethnomedicine. In: Advances in phytomedicine. Elsevier; 2002. p. 1–22.

Karadag AS, Aslan Kayıran M, Wu C, Chen W, Parish LC. Antibiotic resistance in acne: changes, consequences and concerns. J Eur Acad Dermatology Venereol. 2021; 35(1):73–8.

Dietvorst J, Vilaplana L, Uria N, Marco M-P, MuñozBerbel X. Current and near-future technologies for antibiotic susceptibility testing and resistant bacteria detection. TrAC Trends Anal Chem. 2020; 127:115891.

Cheesman MJ, Ilanko A, Blonk B, Cock IE. Developing new antimicrobial therapies: are synergistic combinations of

plant extracts/compounds with conventional antibiotics the solution? Pharmacogn Rev. 2017; 11(22):57.

Pasrija P, Girdhar M, Kumar M, Arora S, Katyal A.Endophytes: an unexplored treasure to combat Multidrug resistance. Phytomedicine Plus. 2022;100249.

AlSheikh HM Al, Sultan I, Kumar V, Rather IA, Al-Sheikh H, Tasleem JA, Haq, QMR. Plant-based phytochemicals as

possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics. 2020; 9(8):480.

Poulios E, Vasios GK, Psara E, Giaginis C. Medicinal plants consumption against urinary tract infections: a narrative review of the current evidence. Expert Rev Anti Infect Ther. 2021; 19(4):519–28.

Mulat M, Pandita A, Khan F. Medicinal plant compounds for combating the multi-drug resistant pathogenic bacteria:

a review. Curr Pharm Biotechnol. 2019;20(3):183–96.

Alibi S, Selma W Ben, Ramos-Vivas J, Smach MA, Touati R, Boukadida J, Navas J, Mansour HB. Anti-oxidant,

antibacterial, anti-biofilm, and anti-quorum sensing activities of four essential oils against multidrug-resistant bacterial clinical isolates. Curr Res Transl Med. 2020; 68(2):59–66.

Corbu VM, Gheorghe I, Marinaș IC, Geană EI, Moza MI,Csutak O, Chifiriuc MC. Demonstration of Allium sativum Extract Inhibitory Effect on Biodeteriogenic Microbial Strain Growth, Biofilm Development, and Enzymatic and Organic Acid Production. Molecules. 2021; 26(23):7195.

Ehaimir SY, Ibrahim MA, Abdalhalim AM, Ibrahim SO, Alzain AA, Alameen AA, Hassan SH, Ahmed SH, Ahmed EM, Abdalrahman MA. Antibacterial, Antioxidant Activities, GC-MS Analysis and Docking Studies of Guiera senigalensis (L.) Ethanol Leaves Extract: http://www.doi.or g/10.26538/tjnpr/v7i1.12. Trop J Nat Prod Res. 2023; 7(1):2162–7.

Casillas-Vargas G, Ocasio-Malavé C, Medina S, MoralesGuzmán C, Del Valle RG, Carballeira NM, Sanabria-Ríos DJ. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res. 2021; 82:101093.

Koch AL. Bacterial wall as target for attack: past, present, and future research. Clin Microbiol Rev. 2003; 16(4):673–

Epand RM, Walker C, Epand RF, Magarvey NA. Molecular mechanisms of membrane targeting antibiotics. Biochim

Biophys Acta (BBA)-Biomembranes. 2016; 1858(5):980–7.

Arenz S, Wilson DN. Bacterial protein synthesis as a target for antibiotic inhibition. cold spring Harb Perspect Med.

; 6(9):a025361.

Amer RI, El-Osaily GH, Bakr RO, El Dine RS, Fayez AM. Characterization and pharmacological evaluation of anticellulite herbal product (s) encapsulated in 3D-fabricated polymeric microneedles. Sci Rep. 2020; 10(1):1–16.

Borquaye LS, Doetse MS, Baah SO, Mensah JA. Antiinflammatory and anti-oxidant activities of ethanolic extracts of Tamarindus indica L.(Fabaceae). Cogent Chem. 2020; 6(1):1743403.

Assi G Al, Al-Bashaereh A, Alsarayreh A, Al Qaisi Y, AlMajali I, Khleifat K, Alqaraleh M, Qaralleh H, Al-Farrayeh Evaluation of Antibacterial, Antioxidant and Antiinflammatory Properties of Methanol Extract of Varthemia iphionoides: http://www.doi.org/10.26538/tjnpr/v7i1.4. Trop J Nat Prod Res. 2023; 7(1 SE-Articles):2107–14.

Al-Yahya M, Mothana R, Al-Said M, Al-Dosari M, AlMusayeib N, Al-Sohaibani M, Parvez MK, Rafatullah S.

Attenuation of CCl4-induced oxidative stress and hepatonephrotoxicity by Saudi Sidr honey in rats. EvidenceBased Complement Altern Med. 2013;2013.

Xiao J, Liong EC, Huang H, Tse WO, Lau KS, Pan J, Nanji AA, Fung, ML, Xing F, Tipoe GL. Cyclooxygenase-1

serves a vital hepato-protective function in chemically induced acute liver injury. Toxicol Sci. 2015; 143(2):430–40.

O’Grady JG, Schalm SW, Williams R. Acute liver failure: redefining the syndromes. Lancet (London, England). 1993; 342(8866):273–5.

Ayeni G, Simelane BCM, Islam SM, Pooe JO. The Hepatoprotective Role of Warburgia Salutaris and IsoMukaadial Acetate on Carbon Tetrachloride Intoxicated Rats Model. Curr Bioact Compd. 2021; 17:1–6.

Dooley S, ten Dijke P, Weng H, Xu C, Hellerbrand C, Liu Y, Meyer C. Animal models of chronic liver diseases. Am J

Physiol Liver Physiol. 2012; 304(5):G449–68.

Frank D, Savir S, Gruenbaum BF, Melamed I, Grinshpun J, Kuts R, nyazer, BorisZlotnik A, Vinokur M, Boyko M.

Inducing acute liver injury in rats via carbon tetrachloride (CCl4) exposure through an orogastric tube. JoVE (Journal

Vis Exp. 2020; (158):e60695.

Zamzami MA, Baothman OAS, Samy F, Abo-Golayel MK. Amelioration of CCl4-Induced Hepatotoxicity in Rabbits by

Lepidium sativum Seeds. Evidence-Based Complement Altern Med. 2019; 2019:1–17.

Unsal V, Cicek M, Sabancilar İ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev

Environ Health. 2021; 36(2):279-295.

Delgado-Montemayor C, Cordero-Pérez P, Salazar-Aranda R, Waksman-Minsky N. Models of hepatoprotective

activity assessment. Med Univ. 2015; 17(69):222–8.

Zhang D-G, Zhang C, Wang J-X, Wang B-W, Wang H, Zhang Z-H, Chen Y-H, Lu Y, Tao L, Wang J-Q. Obeticholic acid protects against carbon tetrachlorideinduced acute liver injury and inflammation. Toxicol Appl Pharmacol. 2017; 314:39–47.

Mothana RA, Khaled JM, El-Gamal AA, Noman OM, Kumar A, Alajmi MF, Al-Rehaily AJ, Al-Said MS. Comparative evaluation of cytotoxic, antimicrobial and antioxidant activities of the crude extracts of three Plectranthus species grown in Saudi Arabia. Saudi Pharm J. 2019; 27(2):162–70.

Mbaveng AT, Kuete V, Efferth T. Potential of Central, Eastern and Western Africa medicinal plants for cancer

therapy: spotlight on resistant cells and molecular targets. Front Pharmacol. 2017; 8:343.

Larayetan R, Osanekwu S, Sokwo M. Phytochemical components of methanolic fruit extract of Dennettia tripetala. J Funct Mater Biomol. 2018; 2(2):48–52.

Iseghohi SO. A review of the uses and medicinal properties of Dennettia tripetala (Pepperfruit). Med Sci. 2015;

(4):104–11.

Ukeh DA, Oku EE, Udo IA, Nta AI, Ukeh JA. Insecticidal effect of fruit extracts from Xylopia aethiopica and Dennettia tripetala (Annonaceae) against Sitophilus oryzae (Coleoptera: Curculionidae). Chil J Agric Res. 2012; 72(2):195.

Oyemitan IA, Elusiyan CA, Akanmu MA, Olugbade TA. Hypnotic, anticonvulsant and anxiolytic effects of 1-nitro-2-

phenylethane isolated from the essential oil of Dennettia tripetala in mice. Phytomedicine. 2013; 20(14):1315–22.

Anosike CA, Okagu IU, Uchenna OK. Phytoconstituents, acute toxicity study and protective effect of ethanol extract

of Dennettia tripetala seed against aspirin-induced ulcer in rats. Int J Adv Sci Res. 2016; 1(4):1–6.

Omage SO, Orhue NEJ, Omage K. Evaluation of the phytochemical content, in vitro antioxidant capacity, biochemical and histological effects of Dennettia tripetala fruits in healthy rats. Food Sci Nutr. 2019; 7(1):65–75.

Yadav M, Chatterji S, Gupta SK, Watal G. Preliminary phytochemical screening of six medicinal plants used in traditional medicine. Int J Pharm Pharm Sci. 2014; 6( 5):539–42.

Adeyemi S, Larayetan R, Onoja AD, Ajayi A, Yahaya A, Ogunmola OO, Adeyi, AOChijioke O. Anti-hemorrhagic

activity of ethanol extract of Moringa oleifera leaf on envenomed albino rats. Sci African. 2021; 12:e00742.

Larayetan R, Ololade ZS, Ogunmola OO, Ladokun A. Phytochemical constituents, antioxidant, cytotoxicity, antimicrobial, antitrypanosomal, and antimalarial potentials of the crude extracts of Callistemon citrinus. EvidenceBased Complement Altern Med. 2019;2019.

Nantitanon W, Chowwanapoonpohn S, Okonogi S.Antioxidant and antimicrobial activities of Hyptis suaveolens essential oil. Sci Pharm. 2007; 75(1):35–54.

Collins CH. Microbiological methods. Microbiol methods. 1967;(2nd Edition).

Ouedrhiri W, Balouiri M, Bouhdid S, Moja S, Chahdi FO, Taleb M, Greche H. Mixture design of Origanum compactum, Origanum majorana and Thymus serpyllumessential oils: optimization of their antibacterial effect. Ind Crops Prod. 2016; 89:1–9.

Akinpelu DA, Abioye EO, Aiyegoro OA, Akinpelu OF, Okoh AI. Evaluation of antibacterial and antifungal properties of Alchornea laxiflora (Benth.) Pax. & Hoffman. Evidence-Based Complement Altern Med. 2015;2015.

Erhirhie EO, Ihekwereme CP, Ilodigwe EE. Advances in acute toxicity testing: strengths, weaknesses and regulatory

acceptance. Interdiscip Toxicol. 2018; 11(1):5-12.

Farombi EO. Mechanisms for The Hepatoprotective Action of Kolaviron: Studies on Hepatic Enzymes, Microsomal

Lipids and Lipid Peroxidation in CarbontetrachlorideTreated Rat. Pharmacol Res. 2000; 42(1):75-80.

Rao GMM, Rao C V, Pushpangadan P, Shirwaikar A. Hepatoprotective effects of rubiadin, a major constituent of

Rubia cordifolia Linn. J Ethnopharmacol. 2006; 103(3):484–90.

Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984; 21(2):130–2.

Hadwan MH, Abed HN. Data supporting the spectrophotometric method for the estimation of catalase activity. Data Br. 2016; 6:194–9.

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.

Oboh G, Akinyemi AJ, Ademiluyi AO. Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe(2+) induced lipid peroxidation in rat brain in vitro. Exp Toxicol Pathol. 2012; 64(1–2):31–6.

Teres S, Barceló-Coblijn G, Benet M, Alvarez R, Bressani R, Halver JE, EscribaPV.Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci. 2008; 105(37):13811–6.

Asawalam EF, Emosairue SO, Ekeleme F, Wokocha RC. Insecticidal effects of powdered parts of Eight Nigerian plant species against maize weevil Sitophilus zeamais motschulsk (Coleaoptera: Curculionidae). Niger Agric J. 2006; 37:106–16.

Oyemitan IA, Iwalewa EO, Akanmu MA, Olugbade TA. Antinociceptive and antiinflammatory effects of essential

oil of Dennettia tripetala G. Baker (Annonaceae) in rodents. African J Tradit Complement Altern Med. 2008;5(4):355–62.

Liskova A, Koklesova L, Samec M, Varghese E, Abotaleb M, Samuel SM, Smejkal, Karel BK, Petras M, Blahutova D.

Implications of flavonoids as potential modulators of cancer neovascularity. J Cancer Res Clin Oncol. 2020; 146(12):3079–96.

Haw KY, Chakravarthi S, Haleagrahara N, Rao M. Effects of Etlingera elatior extracts on lead acetate-induced testicular damage: A morphological and biochemical study. Exp Ther Med. 2011/09/21. 2012; 3(1):99–104.

Ayeni G, Pooe OJ, Singh M, Nundkumar N, Simelane MBC. Cytotoxic and Antioxidant Activities of SelectedSouth African Medicinal Plants. Pharmacogn J. 2019; 11(6s):1532-1539.

Reveny J, Maha HL, Laila L. A Comparative Study of Phytochemical Screening and DPPH Radical Scavenging Activity of Ficus carica Linn. Leaves Extracts: http://.www.doi.org/10.26538/tjnpr/v7i2.5. Trop J Nat Prod Res. 2023; 7(2 SE-Articles):2337–40.

Sanni O, Erukainure OL, Oyebode OA, Koorbanally NA, Islam MS. Concentrated hot water-infusion of

phragmanthera incana improves muscle glucose uptake, inhibits carbohydrate digesting enzymes and abates Fe2+-

induced oxidative stress in hepatic tissues. Biomed Pharmacother. 2018; 108(September):417–23.

Rathee JS, Hassarajani SA, Chattopadhyay S. Antioxidant activity of Nyctanthes arbor-tristis leaf extract. Food Chem. 2007; 103(4):1350–7.

Ejechi BO, Akpomedaye DE. Activity of essential oil and phenolic acid extracts of pepperfruit (Dennetia tripetala G.

Barker; Anonaceae) against some food-borne microorganisms. African J Biotechnol. 2005; 4(3):258–61.

Reihemann K, Behnke B, Schulze-Osthoff K. Plant extract from stinging nettle (Urtica dioica), an antirheumatic

remedy, inhibit the proinflammatory transcription factor. FEBS Lett. 1999; 442:89–94.

Sparg S, Light ME, Van Staden J. Biological activities and distribution of plant saponins. J Ethnopharmacol. 2004;

(2–3):219–43.

Rossiter SE, Fletcher MH, Wuest WM. Natural products as platforms to overcome antibiotic resistance. Chem Rev.

; 117(19):12415–74.

Gadisa E, Weldearegay G, Desta K, Tsegaye G, Hailu S, Jote K, Takele A. Combined antibacterial effect of essential

oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC

Complement Altern Med. 2019; 19(1):1–9.

Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure–

activity relationship: An update review. Phyther Res. 2019; 1;33(1):13–40.

Dhawan D, Gupta J. Research article comparison of different solvents for phytochemical extraction potential

from datura metel plant leaves. Int J Biol Chem. 2017; 11(1):17–22.

Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles

toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine anotechnology,

Biol Med. 2011; 7(2):184–92.

Suckling C. From multiply active natural product to candidate drug? Antibacterial (and other) minor groove

binders for DNA. Future Med Chem. 2012; 4(8):971–89.

Ludwig JA, Szakács G, Martin SE, Chu BF, Cardarelli C, Sauna ZE, Caplen NJ,

Fales HM, Ambudkar SV, Weinstein JN. Selective toxicity of NSC73306 in MDR1- positive cells as a new

strategy to circumvent multidrug resistance in cancer. Cancer Res. 2006; 66(9):4808–15.

Epand RF, Savage PB, Epand RM. Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim Biophys Acta (BBA)-Biomembranes. 2007; 1768(10):2500–9.

Pal A, Goswami R, Roy DN. A critical assessment on biochemical and molecular mechanisms of toxicity developed by emerging nanomaterials on important microbes. Environ Nanotechnology, Monit Manag. 2021; 16:100485.

Parveen R, Maiti PK, Murmu N, Datta A. Preparation of serum capped silver nanoparticles for selective killing of

microbial cells sparing host cells. Sci Rep. 2021; 11(1):1– 12.

van Eijk E, Wittekoek B, Kuijper EJ, Smits WK. DNA replication proteins as potential targets for antimicrobials in

drug-resistant bacterial pathogens. J Antimicrob Chemother. 2017; 72(5):1275–84.

Heise T, Schmidt F, Knebel C, Rieke S, Haider W, Pfeil R, Kneuer C, Niemann L, Marx-Stoelting P. Hepatotoxic

effects of (tri)azole fungicides in a broad dose range. Arch Toxicol. 2015; 89(11):2105–17.