Modulating Effect of Vincamine on the Oxidative Stress Markers and Lipid Profile in High Fat Diet and Streptozotocin-Induced Type 2 Diabetic Rats. doi.org/10.26538/tjnpr/v6i4.14

Main Article Content

Nasreena Shaban
Chakkravarthy Elanchezhiyan
Shanmugam Manoharan

Abstract

Diabetes mellitus, a silent killer and life threatening metabolic syndrome of human population, is not only characterized by hyperglycemia but also with altered status of oxidative stress markers and lipid profile. The study evaluated the modulating effect of vincamine on the oxidative stress markers and lipid profile in high-fat diet and streptozotocin-induced type 2 diabetic rats. Type 2 diabetes mellitus was induced by feeding the animals with a high-fat diet (40%) for 4 weeks followed by a single intraperitoneal dose of streptozotocin (35 mg/kg b.w). Diabetic rats were treated for 30 days with vincamine at a dose of 30 mg/kg b.w orally. Glibenclamide (600 μg/kg b.w) was used as a standard reference drug to compare the antidiabetic activity of vincamine. The status of glucose, insulin, oxidative stress markers, and lipid profile were analyzed to validate the antidiabetic effect of vincamine. Vincamine significantly (p< 0.05) reduced the concentrations of blood glucose, glycosylated haemoglobin, total cholesterol, triglyceride, low-density lipoprotein cholesterol, and very-low-density lipoprotein cholesterol and increased the levels of high-density lipoprotein cholesterol and serum insulin. Vincamine administration also decreased thiobarbituric acid reactive substances (TBARS) levels and enhanced the status of catalase, superoxide dismutase, reduced glutathione and glutathione peroxidase. Vincamine has been found to possess antidiabetic, antidyslipidemic, and antioxidant properties and the antidiabetic effect of vincamine was much comparable to that of Glibenclamide, a well knownhypoglycaemic drug. Vincamine thus possesses potential to be used as a natural antidiabetic remedy for the treatment of diabetes mellitus.

Downloads

Download data is not yet available.

Article Details

How to Cite
Shaban, N., Elanchezhiyan, C., & Manoharan, S. (2022). Modulating Effect of Vincamine on the Oxidative Stress Markers and Lipid Profile in High Fat Diet and Streptozotocin-Induced Type 2 Diabetic Rats.: doi.org/10.26538/tjnpr/v6i4.14. Tropical Journal of Natural Product Research (TJNPR), 6(4), 546-551. https://tjnpr.org/index.php/home/article/view/1694
Section
Articles

How to Cite

Shaban, N., Elanchezhiyan, C., & Manoharan, S. (2022). Modulating Effect of Vincamine on the Oxidative Stress Markers and Lipid Profile in High Fat Diet and Streptozotocin-Induced Type 2 Diabetic Rats.: doi.org/10.26538/tjnpr/v6i4.14. Tropical Journal of Natural Product Research (TJNPR), 6(4), 546-551. https://tjnpr.org/index.php/home/article/view/1694

References

Mali KK, Dias RJ, Havaldar VD, Yadav SJ. Antidiabetic effect of garcinol on streptozotocin-induced diabetic rats. Indian J Pharm Sci. 2017; 79(3):463-468.

Cho N, Shaw JE, Karuranga S, Huang Y, da Rocha JD, Ohlrogge AW, Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018; 138(4): 271-281.

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin, N, IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res ClinPract. 2019;157(11):107843.

Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus:a review. Int J Health Sci. 2017; 11(2):65-71.

Pavana P, Sethupathy S, Manoharan S. Antihyperglycemic and antilipidperoxidative effects of Tephrosia purpurea seed extract in streptozotocin induced diabetic rats. Indian J Clin Biochem.2007; 22(1):77-83.

Gavin III JR, Alberti KG MM, Davidson MB, DeFronzo RA. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care.1997; 20(7):1183-1197.

Savu O, Ionescu-Tirgoviste C, Atanasiu V, Gaman L, Papacocea R, Stoian I. Increase in total antioxidant capacity of plasma despite high levels of oxidative stress in uncomplicated type 2 diabetes mellitus. Int J Med Res. 2012; 40(2):709-716.

Kumthekar M and Katyare S. Altered kinetic attributes of Na (+)+ K (+)-ATPase activity in kidney, brain and erythrocyte membranes in alloxan-diabetic rats. Indian J Exp Biol. 1992; 30(1):26-32.

Sophia D and Manoharan, S. Hypolipidemic activities of Ficusracemosa Linn.bark in alloxan-induced diabetic rats. Afr J Tradit Complement Altern Med. 2007; 4(3):279- 288.

Sumana G and Suryawashi SA. Effect of Vincarosea extracts in treatment of alloxan diabetes in male albino rats. Indian J Exp Biol. 2001; 39(8):748-759.

Shukla S and Mehta A. Anticancer potential of medicinal plants and their phytochemicals: a review.Rev Bras Bot. 2015; 38(2):199-210.

Mishra JN and Verma NK. A brief study on Catharanthusroseus: a review. Int J Res Pharm Pharm Sci. 2017; 2(2):20-23.

Fischhof PK, Möslinger-Gehmayr R, Herrmann WM, Friedmann A, Ruβmann DL. Therapeutic efficacy of vincamine in dementia. Neuropsychobiol.1996; 34(1):29- 35.

Fandy TE, Abdallah I, Khayat M, Colby DA, Hassan HE. In vitro characterization of transport and metabolism of the alkaloids: vincamine, vinpocetine and eburnamonine. Cancer ChemotherPharmacol. 2016; 77(2):259-267.

Al-Rashed S, Baker A, Ahmad SS, Syed A, Bahkali AH, Elgorban AM, Khan MS. Vincamine, a safe natural alkaloid, represents a novel anticancer agent. Bioorg Chem. 2021; 107(2):104626.

Nandini HS and Naik PR. Antidiabetic, the antihyperlipidemic and antioxidant effect of Vincamine, in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2019; 843(1):233-239.

Wang J, Lv X, Xu J, Liu X, Du T, Sun G, Hu L. Design, synthesis, and biological evaluation of vincamine derivatives as potential pancreatic β-cells protective agents for the treatment of type 2 diabetes mellitus. Eur J Med Chem. 2020; 188(4):111976.

El-Sayed, RM, El Gheit REA, Badawi GA. Vincamine protects against cisplatin-induced nephrotoxicity via activation of Nrf2/HO-1 and hindering TLR4/IFN-γ/CD44 cells inflammatory cascade. Life Sci. 2021; 272(9):119224.

Sheref A, Naguib Y, Abouelnour E, Salem H, Hassan M, Razek A. Neuroprotective Effect of Piracetam and Vincamine in a Rat Model of Haloperidol-induced Parkinson's Disease. Bull EgySocPhysiol Sci. 2022; 42(1):11-26.

Wu L, Ye M, Zhang J. Vincamine prevents lipopolysaccharide-induced inflammation and oxidative stress via thioredoxinreductase activation in human corneal epithelial cells. Am J Transl Res. 2018; 10(7):2195-2204.

Shalaby YM, Menze ET, Azab SS, Awad AS. Involvement of Nrf2/HO-1 antioxidant signaling and NF-κB inflammatory response in the potential protective effects of vincamine against methotrexate-induced nephrotoxicity in rats: cross-talk between nephrotoxicity and neurotoxicity. Arch Toxicol. 2019; 93(5):1417-1431.

Muthulakshmi S and Saravanan R. Efficacy of azelaic acid on hepatic key enzymes of carbohydrate metabolism in high fat diet-induced type 2 diabetic mice. Biochimie. 2013; 95(6):1239-1244.

Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann ClinBiochem. 1969; 6(1):24-27.

Camara PD, Velletri K, Krupski M, Rosner M, Griffiths WC. Evaluation of the Boehringer Mannheim ES 300 immunoassay analyzer and comparison with enzyme immunoassay, fluorescence polarization immunoassay, and radioimmunoassay methods. Clin Biochem. 1992; 25(4):251-254.

Drabkin DL and Austin JH. Spectrophotometric studies: I. Spectrophotometric constants for common hemoglobin derivatives in human, dog, and rabbit blood.J Biol Chem. 1932; 98(2):719-733.

Bannon P. Effect of pH on the elimination of the labile fraction of glycosylated hemoglobin. Clin Chem. 1982; 28(10):2183-2183.

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without the use of the preparative ultracentrifuge. Clin Chem. 1972; 18(6):499-502.

Zilversmit DB and Davis AK. Micro determination of plasma phospholipids by trichloroacetic acid precipitation. J Lab Clin Med. 1950; 35(1):155-160.

Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J BiochemBiophys. 1984; 21(2):130-132.

Yagi K. Lipid peroxides and human diseases. Chem Phys Lipids. 1987; 45(2-4):337-351.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2):351-358.

Sinha AK. Colorimetric assay of catalase. Anal Biochem.1972; 47(2):389-394.

Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: Biochemical Role as a Component of Glutathione Peroxidase. Sci. 1973; 179(4073):588-590.

Ellman GL. Tissue sulfhydryl groups. Arch BiochemBiophys. 1959; 82(1):70-77.

Campbell IW. Type 2 diabetes mellitus: the silent killer. Pract Diabetes. 2001; 18(6):187-191.

Magdalena JS, Flaczyk E, Jeszka J, Krejpcio Z, Krol E, Buchowski, MS, Mulberry leaf extract intake reduces hyperglycemia in streptozotocin (STZ) induced diabetic rats fed a high fat diet. J Funct Foods. 2014; 8(1):9-17.

Srinivasan K, Viswanath B, Asrat L, Kaul CL, Ramarao P.Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005; 52(4):313-320.

Pari L and Saravanan R. Antidiabetic effect of diasulin, a herbal drug, on blood glucose, plasma insulin and hepatic enzymes of glucose metabolism in hyperglycaemic rats. Diabetes ObesMetab. 2004; 6(4):286-292.

Ramkumar KM, Latha M, Venkateswaran S, Pari L, Ananthan R, Bai VN. Modulatory effect of Gymnemamontanum leaf extract on brain antioxidant status and lipid peroxidation in diabetic rats. J Med Food. 2004; 7(3):366-371.

Volpe CMO, Villar-Delfino PH. Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018; 9(2):1-9.

Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxid. 2019; 8(3):72.

Abdou HM and Abd Elkader HTAE. The potential therapeutic effects of Trifoliumalexandrinum extract, hesperetin and quercetin against diabetic nephropathy via attenuation of oxidative stress, inflammation, GSK-3β and apoptosis in male rats. Chem. Biol. Interact. 2022; 352(2):109781.

Gopinath V, Shamsitha MKA, Penarveettil N, Seena V, Uppu RM, Raghavamenon A. Thermally oxidized coconut oil as fat source in high-fat diet induces hepatic fibrosis in diabetic rat model. Cell BiochemBiophys. 2022; 79(3):629-639.

Singh B, Kumar A, Singh H, Kaur S, Arora S, Singh B. Protective effect of vanillic acid against diabetes and diabetic nephropathy by attenuating oxidative stress and upregulation of NF‐κB, TNF‐α and COX‐2 proteins in rats. Phytother Res.2022; 36(3):1338-1352.

Giacco F and Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010; 107(9):1058-1070.

Chandrasegaran G, Elachezhyian C, Ghosh K, Sethupathy S. Berberine Chloride ameliorates oxidative stress, inflammation and apoptosis in the pancreas of streptozotocininduced diabetic rats. Biomed Pharmocother. 2017; 95(11):175-185.

Rashid U and Khan MR. Phytochemicals of PeriplocaaphyllaDcne. amelioratedstreptozotocin-induced diabetes in rat. Environ Health Prev Med. 2021; 26(1):1- 14.

Huang CH, Lin WK, Chang SH, Tsai GJ. Evaluation of the hypoglycaemic and antioxidant effects of submerged Ganodermalucidum cultures in type 2 diabetic rats. Mycol. 2021; 12(2):82-93.

Reddi AS and Bollineni JS. Selenium-deficient diet induces renal oxidative stress and injury via TGF-β1 in normal and diabetic rats. Kidney Int. 2001; 59(4):1342-1353.

Baynes JW and Thorpe SR. The role of oxidative stress in diabetic complications. CurrOpinEndocrinol Diabetes Obes. 1996; 3(4):277-284.

Bais SK, Shrirao SG, Shende G, Kochar NI, Jiddewar A, Chandewar AV. Evaluation of effects of rutin on oxidative stress in diabetic rat. Int J Pharm Pharm Sci. 2012; 4(5):140-145.

Das S, Beehera JP, Rojaramani Y, Mohanty RR. Effects of resveratrol on oxidative stress in high fat diet/streptozocin induced diabetic wistar albino rats. Int J Basic ClinPharmacol. 2019; 8(3):482-487.

Sahin K, Onderci M, Tuzcu M, Ustundag B, Cikim G, Ozercan İH, Komorowski JR. Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed, streptozotocin-treated rat. Metab. 2017; 56(9):1233-1240.

Pratiwi RY, Elya B, Setiawan H, Solawati A. Alterations in Body Weight, Blood Glucose Levels, and Lipid Profiles in High-Fat Diet-Low Dose Streptozotocin-Induced Diabetic Rats. Pharmacogn J. 2021; 13(6):1562-1567.

Bae JP, Lage MJ, Mo D, Nelson DR, Hoogwerf BJ. Obesity and glycemic control in patients with diabetes mellitus: Analysis of physician electronic health records in the US from 2009–2011. J Diabetes Complic. 2016; 30(2):212-220.

Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Investig. 2017; 114(12):1752-1761.

Abdulmalek S, Eldala A, Awad D, Balbaa M. Ameliorative effect of curcumin and zinc oxide nanoparticles on multiple mechanisms in obese rats with induced type 2 diabetes. Sci Rep. 2021; 11(1):1-22.

Wang J and Ryu HK. The effects of Momordicacharantia on obesity and lipid profiles of mice fed a high fat diet. Nutr Res Pract. 2015; 9(5):489-495.

Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus– atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci. 2020; 21(5):1835.

La L, Prattichizzo F, Ceriello A. The link between diabetes and atherosclerosis. Eur J PrevCardiol. 2019; 26(2l):15-24.