Erratum: A Review of Marine Natural Product Resources with Potential Bioactivity Against SARS-COV-2 http://www.doi.org/10.26538/tjnpr/v7i1.2
Main Article Content
Abstract
The emergence of new pathogenic viruses and the constant outbreak of viral diseases have created an upsurge in novel antiviral agents. Marine natural products are the most unexplored reservoir of novel, biologically active, chemically diverse compounds. A systematic literature review was conducted using PRISMA guidelines, accessing four major databases; PubMed, Science Direct, Scopus, and Google Scholar. Numerous studies supported the robust antiviral activity of marine resources against drug-resistant viruses such as SARS, Ebola, Influenza, and HIV. However, adequate research on marine resources for developing anti-covid therapy is lacking. The aim of the review was to explore the marine resources and their compounds that could lead to developing an effective antiviral drug. We also highlighted the current status of novel compounds against different species of corona family and discussed the future prospects of marine resources against COVID-19 management.
Downloads
Article Details
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Arrazola J, Masiello MM, Joshi S, Dominguez AE, Poel A, Wilkie CM, Bressler JM, McLaughlin J, Kraszewski J, Komatsu KK, Peterson Pompa X, Jespersen M, Richardson G, Lehnertz N, LeMaster P, Rust B, Keyser Metobo A, Doman B, Casey D, Kumar J, Rowell AL, Miller TK, Mannell M, Naqvi O, Wendelboe AM, Leman R, Clayton JL, Barbeau B, Rice SK, Warren-Mears V, Echo-Hawk A, Apostolou A, Landen M. COVID-19 Mortality Among American Indian and Alaska Native Persons — 14 States, January–June 2020. MMWR Morb Mortal Wkly Rep. 2020;69(49):1853-1856.
Geahchan S, Ehrlich H, Rahman MA. The anti-viral applications of marine resources for COVID-19 treatment: An overview. Mar Drugs. 2021;19(8):409-422.
Sun T-T, Zhu H-J, Cao F. Marine Natural Products as a Source of Drug Leads against Respiratory Viruses: Structural and Bioactive Diversity. Curr Med Chem. 2020;28(18):3568-3594.
Chakravarti R, Singh R, Ghosh A, Dey D, Sharma P, Velayutham R, Roy S, Ghosh D. A review on potential of natural products in the management of COVID-19. RSC Adv. 2021;11(27):16711-16735.
Taglialatela-Scafati O. New Hopes for Drugs against COVID-19 Come from the Sea. Mar Drugs. 2021;19(21):104-105.
Manzo E. Synthesis of marine natural products and molecules inspired by marine substances. Mar Drugs. 2021;19(4):208-210.
Walag AMP. Bioactivities of Extracts from Different Marine Organisms around the World (2000 to Present). Biomed J Sci Tech Res. 2017;1(7):1–3.
Sigwart JD, Blasiak R, Jaspars M, Jouffray JB, Tasdemir D. Unlocking the potential of marine biodiscovery. Nat Prod Rep. 2021;38(7):1235-1242.
Zaporozhets TS, Besednova NN. Biologically active compounds from marine organisms in the strategies for combating coronaviruses. AIMS Microbiol. 2020;6(4):470-494.
Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products. Nat Rev Drug Discov. 2009;8(1):69-85.
Putz A, Proksch P. Chemical Defence in Marine Ecosystems. in Wink, M, editor. Functions and Biotechnology of Plant Secondary Metabolites 2nd Ed. 2018. p. 162-131.
Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL. An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: Antiviral activity on immunocompetent cells. Immunol Lett. 2009;123(2):132-137.
Vincent P, Pignet P, Talmont F, Bozzi L, Fournet B, Guezennec J, Jeanthon C, Prieur D. Production and characterization of an exopolysaccharide excreted by a deep sea hydrothermal vent bacterium isolated from the polychaete annelid Alvinella pompejana. Appl Environ Microbiol. 1994;60(11):4134-4141.
Ahmad AS, Matsuda M, Shigeta S, Okutani K. Revelation of antiviral activities by artificial sulfation of a glycosaminoglycan from a marine Pseudomonas. Marine Biotechnology. 1999;1(1):102-106.
Rinker KD, Kelly RM. Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima. Biotechnol Bioeng. 2000;69(5):537-547.
Poli A, Anzelmo G, Nicolaus B. Bacterial exopolysaccharides from extreme marine habitats: Production, characterization and biological activities. Mar Drugs. 2010. Doi: 10.3390/md8061779.
Nichols CM, Lardière SG, Bowman JP, Nichols PD, Gibson JAE, Guézennec J. Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol. 2005;49(4):578-589.
Laurienzo P. Marine polysaccharides in pharmaceutical applications: An overview. Mar Drugs. 2010;8(9):2435-2465.
Rechter S, König T, Auerochs S, Thulke S, Walter H, Dörnenburg H, Walter C, Marschall M. Antiviral activity of Arthrospira-derived spirulan-like substances. Antiviral Res. 2006;72(3):197-206.
Gustafson K, Roman M, Fenical W. The Macrolactins, a Novel Class of Antiviral and Cytotoxic Macrolides from a Deep-Sea Marine Bacterium. J Am Chem Soc. 1989;111(19):7519-7524.
Wang HN, Sun SS, Liu MZ, Yan MC, Liu YF, Zhu Z, Zhang Z. Natural bioactive compounds from marine fungi (2017–2020). J Asian Nat Prod Res.2022;24(3):203-230.
Takahashi JA, Barbosa BVR, Lima MTNS, Cardoso PG, Contigli C, Pimenta LPS. Antiviral fungal metabolites and some insights into their contribution to the current COVID-19 pandemic. Bioorg Med Chem. 2021; 46:116366.
Srivastav AK, Jaiswal J, Kumar U. In silico bioprospecting of antiviral compounds from marine fungi and mushroom for rapid development of nutraceuticals against SARS-CoV-2. J Biomol Struct Dyn. 2021:1-12.
Qin C, Lin X, Lu X, Wan J, Zhou X, Liao S, Tu Z, Xu S, Liu Y. Sesquiterpenoids and xanthones derivatives produced by sponge-derived fungus Stachybotry sp. HH1 ZSDS1F1-2. J of Antibio. 2015;68(2):121-125.
Singh SB, Zink DL, Goetz MA, Dombrowski AW, Polishook JD, Hazuda DJ. Equisetin and a novel opposite stereochemical homolog phomasetin, two fungal metabolites as inhibitors of HIV-1 integrase. Tetrahedron Lett. 1998;39(16):2243-2246.
Zhang G, Sun S, Zhu T, Lin Z, Gu J, Li D, Gu Q. Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry. 2011;72(11-12):1436-1442.
Rowley D, Kelly S, Kauffman C, Jensen P, Fenical W. Halovirs A–E, new antiviral agents from a marine-Derived fungus of the genus Scytalidium. Bioorg Med Chem. 2003;11(19P):4263–74.
Yagi S, Ono J, Yoshimoto J, Sugita KI, Hattori N, Fujioka T, Fujiwara T, Sugimoto H, Hirano K, Hashimoto N. Development of anti-influenza virus drugs I: Improvement of oral absorption and in vivo anti-influenza activity of Stachyflin and its derivatives. Pharm Res. 1999;16(7):1041–6.
Nong XH, Wang YF, Zhang XY, Zhou MP, Xu XY, Qi SH. Territrem and butyrolactone derivatives from a marine- derived fungus Aspergillus terreus.Mar Drugs. 2014;12(12):6113-6124.
Ma X, Zhu T, Gu Q, Xi R, Wang W, Li D. Structures and antiviral activities of butyrolactone derivatives isolated from Aspergillus terreus MXH-23. J of Ocean Uni of China. 2014;13(6):1067-1070.
Zhu T, Chen Z, Liu P, Wang Y, Xin Z, Zhu W. New rubrolides from the marine-derived fungus Aspergillus terreus OUCMDZ-1925. J Antibiot (Tokyo). 2014;67(4):315–8.
He F, Bao J, Zhang X-Y, Tu Z-C, Shi Y-M, Qi S-H. Asperterrestide A, a Cytotoxic Cyclic Tetrapeptide from the Marine-Derived Fungus Aspergillus terreus SCSGAF0162. J Nat Prod. 2013;76(6):1182–6.
Wang JF, Lin XP, Qin C, Liao SR, Wan JT, Zhang TY, Liu J, Fredimoses M, Chen H, Yang B, Zhou XF, Yang XW, Tu ZC, Liu YH. Antimicrobial and antiviral sesquiterpenoids from sponge-associated fungus, Aspergillus sydowii ZSDS1- F6. J Antibiot. 2014;67(8):581-583.
. Pereira L, Critchley AT. The COVID 19 novel coronavirus pandemic 2020: seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? J Appl Phycol. 2020; 32(3)1875-1877.
Ma X, Nong X-H, Ren Z, Wang J, Liang X, Wang L, Qi SH. Antiviral peptides from marine gorgonian-derived fungus Aspergillus sp. SCSIO 41501. Tetrahedron Lett. 2017;58(12):1151–5.
Tian YQ, Lin XP, Wang Z, Zhou XF, Qin XC, Kaliyaperumal K, Zhang TY, Tu ZC, Liu Y. Asteltoxins with antiviral activities from the marine sponge-Derived fungus Aspergillus sp. Scsio xws02f40. Molecules. 2016;21(1):34-43.
Fang W, Lin X, Zhou X, Wan J, Lu X, Yang B, Ai W, Lin J, Zhang T, Tu Z, Liu Y. Cytotoxic and antiviral nitrobenzoyl sesquiterpenoids from the marine-derived fungus Aspergillus ochraceus Jcma1F17. Med Chem Commun. 2014;5(6):701– 5.
Wu D-L, Li H-J, Smith D, Jaratsittisin J, Xia-Ke-Er X-F-KT, Ma W-Z, Guo Y-W, Dong J, Shen J, Yang D-P, Lan W-J. Polyketides and Alkaloids from the Marine-Derived Fungus Dichotomomyces cejpii F31-1 and the Antiviral Activity of Scequinadoline A against Dengue Virus. Mar Drugs. 2018;16(7):229-238.
Peng J, Zhang X, Du L, Wang W, Zhu T, Gu Q, Li D. Sorbicatechols A and B, Antiviral Sorbicillinoids from the Marine-Derived Fungus Penicillium chrysogenum PJX-17. J Nat Prod. 2014;77(2):424–8.
Shen S, Li W, Wang J. A novel and other bioactive secondary metabolites from a marine fungus Penicillium oxalicum 0312F 1. Nat Prod Res. 2013;27(24):2286-2291.
Tan QW, Ouyang MA, Shen S, Li W. Bioactive metabolites from a marine-derived strain of the fungus Neosartoryafischeri. Nat Prod Res. 2012;26(15):1402-1407.
Singh SB, Zink D, Polishook J, Valentino D, Shafiee A, Silverman K, Felock P, Teran A, Vilella D, Hazuda DJ, Lingham RB. Structure and absolute stereochemistry of HIV-1 integrase inhibitor integric acid. A novel eremophilane sesquiterpenoid produced by a Xylaria sp. Tetrahedron Lett.1999;40(50):8775–9.
Peng J, Lin T, Wang W, Xin Z, Zhu T, Gu Q, Li D. Antiviral alkaloids produced by the mangrove-derived fungus Cladosporium sp. PJX-41. J Nat Prod. 2013;76(6):1133-1140.
Zheng C-J, Shao C-L, Guo Z-Y, Chen J-F, Deng D-S, Yang K-L, Chen Y-Y, Fu X-M, She Z-G, Lin Y-C, Wang C-Y. Bioactive Hydroanthraquinones and Anthraquinone Dimers from a Soft Coral-Derived Alternaria sp. Fungus. J Nat Prod. 2012;75(2):189–97.
Sami N, Ahmad R, Fatma T. Exploring algae and cyanobacteria as a promising natural source of antiviral drug against SARS-CoV-2. Biomed J. 2021;44(1):54-62.
Alam MA, Parra-Saldivar R, Bilal M, Afroze CA, Ahmed MN, Iqbal HMN, Xu J. Algae-derived bioactive molecules for the potential treatment of sars-cov-2. Molecules. 2021;26(8):2134-2149.
Richards JT, Kern ER, Glasgow LA, Overall JC, Deign EF, Hatch MT. Antiviral activity of extracts from marine algae. Antimicrob Agents Chemother. 1978;14(1):24-30.
Gerber P, Dutcher JD, Adams E v., Sherman JH. Protective Effect of Seaweed Extracts for Chicken Embryos Infected with Influenza B or Mumps Virus. Pro Soc Experim Bio Med. 1958;99(3):590-593.
Béress A, Wassermann O, Bruhn T, Béress L, KraiselburdEN, Gonzalez LV, de Motta GE, Chavez PI. A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J Nat Prod. 1993;56(4):478-488.
Baba M, Snoeck R, Pauwels R, de Clercq E. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother. 1988;32(11):1742-1745.
Moen LK, Clark GF. A novel reverse transcriptase inhibitor from Fucus vesiculosus. Int Conf AIDS, 1993; 9(10):145-161.
Kim SK, Karadeniz F. Anti-HIV activity of extracts and compounds from marine algae. Adv in Food Nut Res, 2011;64:255-265.
Witvrouw M. Antiviral activity of a sulfated polysaccharide extracted from the red seaweed Aghardheilla tenera against human immunodeficiency virus and other enveloped viruses. Antiviral Chem Chemother. 1994; 5:2303–997.
Reshef V, Mizrachi E, Maretzki T, Silberstein C, Loya S, Hizi A, Carmeli S. New acylated sulfoglycolipids and digalactolipids and related known glycolipids from cyanobacteria with a potential to inhibit the reverse transcriptase of HIV-1. J Nat Prod. 1997;60(12):1251-1260.
Hayashi T, Hayashi K, Maeda M, Kojima I. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod. 1996;59(1):83-87.
Kim M, Yim JH, Kim SY, Kim HS, Lee WG, Kim SJ, Kang PS, Lee CK. In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide pKG03. Antiviral Res. 2012;93(2):253-259.
Pereira HS, Leão-Ferreira LR, Moussatché N, Teixeira VL, Cavalcanti DN, Costa LJ, Diaz R, Frugulhetti ICPP. Antiviral activity of diterpenes isolated from the Brazilianmarine alga Dictyota menstrualis against human immunodeficiency virus type 1 (HIV-1). Antiviral Res. 2004; 64(1)69-76.
Mori T, O’Keefe BR, Sowder RC, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit RW, McMahon JB, Boyd MR. Isolation and characterization of Griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsiasp. J Bio Che. 2005; 280(10):9345-9353.
Nakashima H, Kido Y, Kobayashi N, Motoki Y, Neushul M, Yamamoto N. Antiretroviral activity in a marine red alga: reverse transcriptase inhibition by an aqueous extract of Schizymenia pacifica. J Cancer Res Clin Oncol. 1987;113(5):413-416.
Lee JB, Hayashi K, Hirata M, Kuroda E, Suzuki E, Kubo Y, Hayashi T. Antiviral sulfated polysaccharide from Naviculadirecta, a diatom collected from deep-sea water in Toyama Bay. Biol Pharm Bull. 2006; 29(10)2135-2139.
O’Keefe BR, Giomarelli B, Barnard DL, Shenoy SR, Chan PKS, McMahon JB, Palmer KE, Barnett BW, Meyerholz DK, Wohlford-Lenane CL, McCray PB. Broad-Spectrum In Vitro Activity and In Vivo Efficacy of the Antiviral Protein Griffithsin against Emerging Viruses of the Family Coronaviridae. J Virol. 2010; 84(5):2511-2521.
Gaikwad M, Pawar Y, Nagle V, Santanu D. Marine red alga Porphyridium sp. as a source of sulfated polysaccharides (SPs) for combating against COVID-19. Preprints (Basel). 2020;(April).
Matsuhiro B, Conte AF, Damonte EB, Kolender AA, Matulewicz MC, Mejías EG, Pujol CA, Zúñiga EA. Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta). Carbohydr Res. 2005; 340(15):2392-2402.
Sulistiyani, Wahjono H, Radjasa OK, Sabdono A, Khoeri MM, Karyana E. Antimycobacterial Activities from Seagrass Enhalus sp. Associated Bacteria Against Multi Drug Resistance Tuberculosis (MDR TB) Bacteria. Procedia Environ Sci. 2015; 23:253-259.
Krylova N v., Leonova GN, Maystrovskaya OS, Popov AM, Artyukov AA. Mechanisms of Antiviral Activity of the Polyphenol Complex from Seagrass of the Zosteraceae Family against Tick-Borne Encephalitis Virus. Bull Exp Biol Med. 2018; 165(1):61-63.
Govindasamy D, Ford N, Kranzer K. Risk factors, barriers and facilitators for linkage to antiretroviral therapy care: A systematic review. AIDS. 2012; 26(16):2059-2067.
Chen MZ, Xie HG, Yang LW, Liao ZH, Yu J. In vitro antiinfluenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis. Virol Sin. 2010; 25(5):341-351.
Sanniyasi E, Venkatasubramanian G, Anbalagan MM, Raj PP, Gopal RK. In vitro anti-HIV-1 activity of the bioactive compound extracted and purified from two different marine macroalgae (seaweeds) (Dictyota bartayesiana J.V.Lamouroux and Turbinaria decurrens Bory). Sci Rep. 2019;9(1):12185.
Plouguerné E, de Souza LM, Sassaki GL, Cavalcanti JF, Romanos MTV, da Gama BAP, Pereira RC, Barreto-Bergter E. Antiviral sulfoquinovosyldiacylglycerols (SQDGs) from the Brazilian brown seaweed Sargassum vulgare. Mar Drugs. 2013; 11(11):4628-4640.
Ryu YB, Jeong HJ, Yoon SY, Park JY, Kim YM, Park SJ, Rho MC, Kim SJ, Lee WS. Influenza virus neuraminidase inhibitory activity of phlorotannins from the edible brown alga ecklonia cava. J Agric Food Chem. 2011; 59(12):6467-6473.
George J. Young COVID-19 Stroke Victims; Alzheimer’s Seaweed Drug; Parkinson’s Med OK’d. MEDPAGE TODAY.
Nagulendran K, Kavitha N. Antiviral and Immuno Modulating Role of Super Food Spirulina and Covid-19. I J of Trend in Sci R and D. 2020; 4(4):621–6.
Lin LT, Hsu WC, Lin CC. Antiviral natural products and herbal medicines. J Tradit Complement Med. 2014; 4(1):24-35.
Srivastava N, Saurav K, Mohanasrinivasan V, Kannabiran K, Singh M. Antibacterial potential of macroalgae collected from the Madappam coast, India. British Journal of Pharmacology and Toxicology. 2010; 1(2):72–6.
Anjum K, Abbas SQ, Shah SAA, Akhter N, Batool S, Hassan SSU. Marine sponges as a drug treasure. Biomol Ther (Seoul). 2016; 24(4):347-362.
Walag AMP. Understanding the World of benthos: an introduction to benthology. in: Godson PS, Vincent SGT, Krishnakumar S, editors. Ecology and Biodiversity of Benthos. 1st ed. 2022; 1–18.
Ridley CP, Bergquist PR, Harper MK, Faulkner DJ, Hooper JNA, Haygood MG. Speciation and biosynthetic variation in four dictyoceratid sponges and their cyanobacterial symbiont, Oscillatoria spongeliae. Chem Biol. 2005;12(3):397-406.
de Lira SP, Seleghim MHR, Williams DE, Marion F, Hamill P, Jean F, Andersen RJ, Hajdu E, Berlinck RGS. A SARScoronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: Structure elucidation and synthesis. J Braz Chem Soc. 2007; 18(2):440-443.
Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A. Putative Inhibitors of SARS-CoV-2 Main Protease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study. Mar Drugs. 2020; 18(4):225.
Souza T, Abrantes J, Epifanio R, Fontes C, Frugulhetti I. The Alkaloid 4-Methylaaptamine Isolated from the Sponge Aaptos aaptos Impairs Herpes simplex Virus Type 1 Penetration and Immediate-Early Protein Synthesis. Planta Med. 2007; 73(3):200–5.
Sagar S, Kaur M, Minneman KP. Antiviral lead compounds from marine sponges. Mar Drugs. 2010; 8(10):2619-2638.
da Rosa Guimarães T, Quiroz C, Rigotto C, de Oliveira S, de Almeida M, Bianco É, Moritz M, Carraro J, Palermo J, Cabrera G, Schenkel E, Reginatto F, Simoes C. Anti HSV-1 Activity of Halistanol Sulfate and Halistanol Sulfate C Isolated from Brazilian Marine Sponge Petromica citrina (Demospongiae). Mar Drugs. 2013; 11(11):4176–92.
Ford PW, Gustafson KR, McKee TC, Shigematsu N, Maurizi LK, Pannell LK, Williams DE, Dilip de Silva E, Lassota P, Allen TM, van Soest R, Andersen RJ, Boyd MR. Papuamides A−D, HIV-Inhibitory and Cytotoxic Depsipeptides from the Sponges Theonella mirabilis and Theonella swinhoei Collected in Papua New Guinea. J Am Chem Soc. 1999;121(25):5899–909.
Faulkner DJ. Marine natural products. Nat Prod Rep. 2002;19(1):1-48.
Müller WEG, Sobel C, Diehl-Seifert B, Maidhof A, Schröder HC. Influence of the antileukemic and anti-human immunodeficiency virus agent avarol on selected immune responses in vitro and in vivo. Biochem Pharmacol. 1987;36(9):1489-1494.
Qureshi A, Faulkner DJ. Haplosamates A and B: New steroidal sulfamate esters from two haploselerid sponges. Tetrahedron. 1999; 55(28):8323-8330.
Cutignano A, Bifulco G, Bruno I, Casapullo A, Gomez Paloma L, Riccio R. Dragmacidin F: A new antiviral bromoindole alkaloid from themediterranean sponge Halicortex sp. Tetrahedron. 2000; 56(23):3743-3748.
Wellington KD, Cambie RC, Rutledge PS, Bergquist PR. Chemistry of Sponges. 19. Novel Bioactive Metabolites from Hamigera tarangaensis. J Nat Prod. 2000; 63(1):79–85.
Perry NB, Blunt JW, Munro MHG, Thompson AM. Antiviral and Antitumor Agents from a New Zealand Sponge, Mycalesp. 2. Structures and Solution Conformations of Mycalamides A and B. Journal of Organic Chemistry. 1990;55(1):223-227.
Plaza A, Gustchina E, Baker HL, Kelly M, Bewley CA. Mirabamides A–D, Depsipeptides from the Sponge Siliquariaspongia mirabilis That Inhibit HIV-1 Fusion. J Nat Prod. 2007; 70(11):1753–60.
O’Rourke A, Kremb S, Bader TM, Helfer M, SchmittKopplin P, Gerwick WH, Brack-Werner R, Voolstra CR. Alkaloids from the sponge Stylissa carteri present prospective scaffolds for the inhibition of human immunodeficiency virus 1 (HIV-1). Mar Drugs. 2016;14(2):28.
Esteves AIS, Nicolai M, Humanes M, Goncalves J. Sulfated Polysaccharides in Marine Sponges: Extraction Methods and Anti-HIV Activity. Mar Drugs. 2011; 9(1):139–53.
Peng J, Hu JF, Kazi AB, Li Z, Avery M, Peraud O, Hill RT, Franzblau SG, Zhang F, Schinazi RF, Wirtz SS, Tharnish P, Kelly M, Wahyuono S, Hamann MT. Manadomanzamines A and B: A Novel Alkaloid Ring System with Potent Activity against Mycobacteria and HIV-1. J Am Chem Soc. 2003; 125(44):13382-13386.
Koh S-I, Shin H-S. The Anti-Rotaviral and Anti-Inflammatory Effects of Hyrtios and Haliclona Species. J Microbiol Biotechnol. 2016; 26(11):2006–11.
Ichiba T, Yoshida WY, Scheuer PJ, Higa T, Gravalos DG. Hennoxazoles, bioactive bisoxazoles from a marine sponge. J Am Chem Soc. 1991; 113(8):3173–4.
Keifer PA, Schwartz RE, Koker MES, Hughes RG, Rittschof D, Rinehart KL. Bioactive Bromopyrrole Metabolites from the Caribbean Sponge Agelas conifera. J Org Chem. 1991;56(9);2965-2975.
Kohmoto S, Mcconnell OJ, Wright A, Cross S. Isospongiadiol, a Cytotoxic and Antiviral Diterpene from a Caribbean Deep Water Marine Sponge, Spongia sp. Chem Lett. 1987; 16(9):1687-1690.
Al-Massarani SM, El-Gamal AA, Al-Said MS, Al-Lihaibi SS, Basoudan OA. In vitro cytotoxic, antibacterial and antiviral activities of triterpenes from the Red Sea sponge, Siphonochalina siphonella. Trop J Pharm Res. 2015;14(1):33-40.
Gong KK, Tang XL, Liu YS, Li PL, Li GQ. Imidazole alkaloids from the South China Sea sponge Pericharaxheteroraphis and their cytotoxic and antiviral activities. Molecules. 2016;21(2):150-157.
Walag AMP, del Rosario RM. Total Flavonoids Content, Total Phenolics Content, and Antioxidant Activities of Acanthaster planci and Linckia laevigata collected from Carmen, Agusan del Norte, Philippines. Malays J Biochem Mol Biol. 2020;23(1):77–85.
Walag AMP, del Rosario RM. Proximate biochemical composition and brine shrimp lethality assay of selected sea stars from Goso-on and Vinapor, Carmen, Agusan del Norte, Philippines. Malays J Biochem Mol Biol. 2018; 21(3):11–8.
Walag AMP, Kharwar RN. Assessment of Crude Extract Yield and In-vitro Antioxidant Activity of Sea Star from Philippines. Uttar Pradesh J of Zoo. 2021; 42(22):68–76.
Walag AMP, del Rosario RM. Initial evaluation of metal content of Acanthaster planci and Linckia laevigata collected from Carmen, Agusan del Norte, Philippines. Malays J Biochem Mol Biol. 2020; 20(3):1–7.
Farshadpour F, Gharibi S, Taherzadeh M, Amirinejad R, Taherkhani R, Habibian A, Zandi K. Antiviral activity of Holothuria sp. a sea cucumber against herpes simplex virus type 1 (HSV-1). Eur Rev Med Pharmacol Sci. 2014; 18:333-337.
Pujol CA, Ray S, Ray B, Damonte EB. Antiviral activity against dengue virus of diverse classes of algal sulfated polysaccharides. Int J Biol Macromol. 2012; 51(4):412-416.
Lu Y, Wang B-L. The Research Progress of Antitumorous Effectiveness of Stichopus japonicus Acid Mucopolysaccharide in North of China. Am J Med Sci. 2009;337(3):195–8.
Maier MS, Roccatagliata AJ, Kuriss A, Chludil H, Seldes AM, Pujol CA, Damonte EB. Two new cytotoxic and virucidal trisulfated triterpene glycosides from the antarctic sea cucumber Staurocucumis liouvillei. J Nat Prod. 2001;64(6):732–6.
Tsushima M, Fujiwara Y, Matsuno T. Novel marine di-Z carotenoids: Cucumariaxanthins A, B, and C from the sea cucumber Cucumaria japonica. J Nat Prod. 1996; 59(1):30-34.
Tripoteau L, Bedoux G, Gagnon J, Bourgougnon N. In vitro antiviral activities of enzymatic hydrolysates extracted from byproducts of the Atlantic holothurian Cucumaria frondosa. Process Biochemistry. 2015. Doi: 10.1016/j.procbio.2015.02.012.
Huang N, Wu M-Y, Zheng C-B, Zhu L, Zhao J-H, Zheng YT. The depolymerized fucosylated chondroitin sulfate from sea cucumber potently inhibits HIV replication via interfering with virus entry. Carbohydr Res. 2013; 380:64–9.
Roccatagliata AJ, Maier MS, Seldes AM, Pujol CA, Damonte EB. Antiviral Sulfated Steroids from the Ophiuroid Ophioplocus januarii. J Nat Prod. 1996; 59(9):887–9.
Comin MJ, Maier MS, Roccatagliata AJ, Pujol CA, Damonte EB. Evaluation of the antiviral activity of natural sulfated polyhydroxysteroids and their synthetic derivatives and analogs. Steroids. 1999; 64(5):335–40.
Peng Y, Zheng J, Huang R, Wang Y, Xu T, Zhou X, Liu Q, Zeng F, Ju H, Yang X, Liu Y. Polyhydroxy steroids and saponins from China Sea starfish Asterina pectinifera and their biological activities. Chem Pharm Bull (Tokyo). 2010;58(6):856-858.
Jha R, Zi-rong X. Biomedical Compounds from Marine organisms. Mar Drugs. 2004; 2(3):123-146.
Wijanarko A, Lischer K, Hermansyah H, Pratami DK, Sahlan M. Antiviral activity of Acanthaster planci phospholipase A2 against human immunodeficiency virus. Vet World. 2018;11(6):824–9.
Salas-Rojas M, Galvez-Romero G, Anton-Palma B, Acevedo R, Blanco-Favela F, Aguilar-Setién A. The coelomic fluid of the sea urchin Tripneustes depressus shows antiviral activity against Suid herpesvirus type 1 (SHV-1) and rabies virus (RV). Fish Shellfish Immunol. 2014; 36(1):158-163.
Fedoreyev S, Krylova N, Mishchenko N, Vasileva E, Pislyagin E, Iunikhina O, Lavrov V, Svitich O, Ebralidze L, Leonova G. Antiviral and Antioxidant Properties of Echinochrome A. Mar Drugs. 2018; 16(12):509.
Laille M, Gerald F, Debitus C. In vitro antiviral activity on dengue virus of marine natural products. Cell Mol Life Sci. 1998;54(2):167–70.
Dong G, Xu T, Yang B, Lin X, Zhou X, Yang X, Liu Y. Chemical constituents and bioactivities of starfish. Chem Biodivers. 2011; 8(5):740–91.
McKee TC, Cardellina JH, Riccio R, D’Auria MV, Iorizzi M, Minale L, Moran RA, Gulakowski RJ, McMahon JB. HIVInhibitory Natural Products. 11. Comparative Studies ofSulfated Sterols from Marine Invertebrates. J Med Chem. 1994; 37(6):793–7.
Savidov N, Gloriozova TA, Dem-bitsky VM. Pharmacological ac-tivities of sulphated steroids derived from marine sources. Life Science Press. 2018; 2(1):48–58.
Nakao Y, Masuda A, Matsunaga S, Fusetani N. Pseudotheonamides, serine protease inhibitors from the marine sponge Theonella swinhoei. J Am Chem Soc. 1999;121(11):2425-2431.
Khan MT, Ali A, Wang Q, Irfan M, Khan A, Zeb MT, Zhang YJ, Chinnasamy S, Wei DQ. Marine natural compounds as potents inhibitors against the main protease of SARS-CoV- 2—a molecular dynamic study. J Biomol Struct Dyn. 2020; 39(10):3627-3637. Doi: 10.1080/07391102.2020.1769733.
Jiménez C. Marine Natural Products in Medicinal Chemistry. ACS Med Chem Lett. 2018; 9(10):959-961.