Ferruginol and Sugiol: A Short Review of their Chemistry, Sources, Contents, Pharmacological Properties and Patents http://.www.doi.org/10.26538/tjnpr/v7i2.4

Main Article Content

Eric W.C. Chan
Siu K. Wong
Hung T. Chan


In this short article, the chemistry, sources, contents, pharmacological properties and patents of ferruginol (FG) and sugiol (SG) are reviewed for the first time. Sources of information cited on these two abietane diterpenes were from databases such as Google, Google Scholar, PubMed, Science Direct, J-Stage, Web of Science and PubChem. In the selection of articles, recent references were accorded higher priority apart from their relevance to the topics. Both FG and SG are characterized by a tricyclic ring system with a hydroxyl group and an isopropyl group at ring C. SG has a carbonyl group at ring B that is absent in FG. Found in the bark and root of plant species particularly those belonging to the families Cupressaceae and Lamiaceae, FG and SG have attracted much attention because of their diverse pharmacological properties, notably, their anti cancer and anti-protozoal activities. Three patents on FG and one on SG are described. Some areas of research requiring further investigations are suggested.

Article Details

How to Cite
Chan, E. W., Wong, S. K., & Chan, H. T. (2023). Ferruginol and Sugiol: A Short Review of their Chemistry, Sources, Contents, Pharmacological Properties and Patents: http://.www.doi.org/10.26538/tjnpr/v7i2.4. Tropical Journal of Natural Product Research (TJNPR), 7(2), 2325–2336. Retrieved from https://tjnpr.org/index.php/home/article/view/1616


Lanzotti V. Diterpenes for Therapeutic Use. In: Ramawat K, Mérillon JM (Eds.) Natural Products. Springer, Berlin, Heidelberg. 2013. 3173-3191 p.

González MA. Aromatic abietane diterpenoids: Their biological activity and synthesis. Nat Prod Rep. 2015; 32:684-704.

González MA. Synthetic derivatives of aromatic abietane diterpenoids and their biological activities. Eur J Med Chem. 2014; 87:834-842.

Chan EWC, Wong SK, Chan HT. An overview of the chemistry and anticancer properties of rosemary extract and its diterpenes. J Herbmed Pharmacol. 2022; 11(1):10-19.

Stobiecka A. A DFT study on the radical-scavenging properties of ferruginol-type diterpenes. Food Biophys. 2019; 14(1):1-12.

Salih AM, Al-Qurainy F, Tarroum M, Khan S, Nadeem M, Shaikhaldein HO, Alansi S. Phytochemical compound profile and the estimation of the ferruginol compound in different parts (roots, leaves, and seeds) of Juniperus procera. Separations. 2022; 9(11): 352-361.

Barzegari F, Hosseinihashemi SK, Baseri H. Chemical composition and antioxidant activity of extracts from the fruit, leaf, and branchlet of Cupressus arizonicaGreene. BioResources. 2023; 18(1):19-38.

Cheng SS, Chang ST. Bioactivity and characterization of exudates from Cryptomeria japonica bark. Wood Sci Technol. 2014; 48(4):831-840.

Chen HL, Lin KW, Gan KH, Wang JP, Won SJ, Lin CN. New diterpenoids and cytotoxic and antiinflammatory diterpenoids from Amentotaxus formosana. Fitoterapia. 2011; 82(2):219-224.

de Passos MS, de Carvalho Junior AR, Boeno SI, das Virgens LD, Calixto SD, Ventura TL, Lassounskaia E, Braz-Filho R, Curcino Vieira IJ. Terpenoids isolated from Azadirachta indica roots and biological activities. Brazileira J Pharmacogn. 2019; 29(1):40-45.

Hsieh YH, Chen KJ, Chien SC, Cheng WL, Xiao JH, Wang SY. ACAT inhibitory activity of exudates from Calocedrus macrolepis var. formosana. Natural Product Communications. 2012;7(12):1934578X1200701206.

Dai N, Wang Q, Bai M, Yang L, Zhao Y. A new abietane diterpene tuurgan A from Caryopteris mongholica. Natural Product Research. 2022;

DOI: 10.1080/1478 6419.2022.2098738.

Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, Lee CK, Chang ST, Kuo CJ, Lee SS, Hou CC. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007; 50(17):4087-4095.

Herrera JC, Troncone G, Henríquez D, Urdaneta N. Trypanocidal activity of abietane diterpenoids from the roots of Craniolaria annua. Zeitschrift für Naturforschung C. 2008;63:821-829.

Tu WC, Wang SY, Chien SC, Lin FM, Chen LR, Chiu CY, Hsiao PW. Diterpenes from Cryptomeria japonicainhibit androgen receptor transcriptional activity in prostate cancer cells. Planta Med. 2007; 73(13):1407-1409.

Imai T, Tanabe K, Kato T, Fukushima K. Localization of ferruginol, a diterpene phenol, in Cryptomeria japonica heartwood by time-of-flight secondary ion mass spectrometry. Planta. 2005; 221(4):549-556.

Takei M, Umeyama A, Arihara S. Epicubenol and ferruginol induce DC from human monocytes and differentiate IL-10-producing regulatory T cells in vitro. Biochem Biophys Res Commun. 2005; 337(2):730-738.

Kuroda K, Fujiwara T, Hashida K, Imai T, Kushi M, Saito K, Fukushima K. The accumulation pattern of ferruginol in the heartwood-forming Cryptomeria japonica xylem as determined by time-of-flight secondary ion mass spectrometry and quantity analysis. Ann Bot. 2014; 113(6):1029-1036.

Li WH, Chang ST, Chang SC, Chang HT. Isolation of antibacterial diterpenoids from Cryptomeria japonica bark. Nat Prod Res. 2008; 2(12):1085-1093.

Ho ST, Tung YT, Kuo YH, Lin CC, Wu JH. Ferruginol inhibits non-small cell lung cancer growth by inducing caspase-associated apoptosis. Integr Cancer Ther. 2015; 14(1):86-97.

Rawat P, Khan MF, Kumar M, Tamarkar AK, Srivastava AK, Arya KR, Maurya R. Constituents from fruits of Cupressus sempervirens. Fitoterapia.


Clarkson C, Campbell WE, Smith P. In vitro antiplasmodial activity of abietane and totarane diterpenes isolated from Harpagophytum procumbens (Devil’s Claw). Planta Med. 2003; 69(8):720-724.

Muhammad I, Mossa JS, El‐Feraly FS. Antibacterial diterpenes from the leaves and seeds of Juniperus excelsa M. Bieb. Phytother Res. 1992; 6(5):261-264.

Samoylenko V, Dunbar DC, Gafur MA, Khan SI, Ross SA, Mossa JS, El‐Feraly FS, Tekwani BL, Bosselaers J, Muhammad I. Antiparasitic, nematicidal and antifouling constituents from Juniperus berries. Phytother Res. 2008; 22(12):1570-1576.

Alqasoumi SI, Abdel-Kader MS. Terpenoids from Juniperus procera with hepatoprotective activity. Pak J Pharm Sci. 2012; 25(2):315-322.

Salih AM, Al-Qurainy F, Nadeem M, Tarroum M, Khan S, Shaikhaldein HO, Al-Hashimi A, Alfagham A, Alkahtani J. Optimization method for phenolic compounds extraction from medicinal plant (Juniperus procera) and phytochemicals screening. Molecules. 2021; 26(24):7454-7465.

Agusta A, Wulansari D, Praptiwi A, Oktavia L, Keim AP. Papuacerdrus papuana (f. Muell.), a new source for two bioactive diterpenes: Ferruginol and transcommunic acid that are virtually active against SARSCOV-2. Rasayan J Chem. 2022;15(2):1378-1385.

de Jesus MB, Zambuzzi WF, de Sousa RR, Areche C, de Souza AC, Aoyama H, Schmeda-Hirschmann G, Rodríguez JA, de Souza Brito AR, Peppelenbosch MP, den Hertog J. Ferruginol suppresses survival signalingpathways in androgen-independent human prostate cancer cells. Biochimie. 2008; 90(6):843-854.

Wenkert E, de Paiva Campello J, McChesney JD, Watts DJ. Diterpenes of Podocarpus ferrugineus bark. Phytochemistry. 1974; 13(11):2545-2549.

Areche C, Rodríguez JA, Razmilic I, Yáñez T, Theoduloz C, Schmeda‐Hirschmann G.Gastroprotective and cytotoxic effect of semisynthetic

ferruginol derivatives. J Pharm Pharmacol. 2007; 59(2):289-300.

Espinoza M, Santos LS, Theoduloz C, SchmedaHirschmann G, Rodríguez JA. New gastroprotective ferruginol derivatives with selective cytotoxicity against gastric cancer cells. Planta Med. 2008; 74(8):802-808.

Flores C, Alarcón J, Becerra J, Bittner M, Hoeneisen M, Silva M. Extractable compounds of native trees chemical and biological study I: Bark of Prumnopitys andina (Podocarpaceae) and Austrocedrus chilensis(Cupressaceae). Bol Soc Chil Quím. 2001; 46(1):61-64.

Zolezzi JM, Lindsay CB, Serrano FG, Ureta RC, Theoduloz C, Schmeda-Hirschmann G, Inestrosa NC. Neuroprotective effects of ferruginol, jatrophone, and junicedric acid against amyloid-β injury in hippocampal neurons. J Alzheimer’s Dis. 2018; 63(2):705-723.

Rodríguez JA, Theoduloz C, Yáñez T, Becerra J, Schmeda-Hirschmann G. Gastroprotective and ulcer healing effect of ferruginol in mice and rats: Assessment of its mechanism of action using in vitromodels. Life Sci. 2006; 78(21):2503-2509.

Rodríguez-Díaz M, Areche C, Delporte C. Antiinflammatory activity of ferruginol from Prumnupitys andina. J Life Sci. 2013; 7(11):1165-1169.

Surekha C, Srikanth R, Thupurani MK, Neelapu NR, Peddireddy V. Antimicrobial activities of Salacia oblonga Wall leaf and root extracts against different bacterial strains and fungal isolates. Curr Microbiol. 2022; 79(7):1-10.

Bakir D, Akdeniz M, Ertas A, Yilmaz MA, Yener I, Firat M, Kolak U. A GC-MS method validation for quantitative investigation of some chemical markers in Salvia hypargeia Fisch. & CA Mey. of Turkey: Enzyme inhibitory potential of ferruginol. J Food Biochem. 2020; 44(9):e13350.

Mirzaei HH, Firuzi O, Schneider B, Baldwin IT, Jassbi AR. Cytotoxic diterpenoids from the roots of Salvia lachnocalyx. Brazil J Pharmacogn. 2017; 27:475-479.

Miyasaka H, Nasu M, Yoneda K. Salvia miltiorrhiza: In vitro production of cryptotanshinone and ferruginol. In: Bajaj YPS (Ed.) Medicinal and Aromatic Plants II. Biotechnology in Agriculture and Forestry, vol. 7. Springer, Berlin, Heidelberg, 1989. 417-430 p.

Fronza M, Murillo R, Ślusarczyk S, Adams M, Hamburger M, Heinzmann B, Laufer S, Merfort I. In vitro cytotoxic activity of abietane diterpenes from Peltodon longipes as well as Salvia miltiorrhiza and Salvia sahendica. Bioorg Med Chem. 2011; 19(16):4876-4881.

Tsutomu N, Hitoshi M, Masao N, Hideko H, Kaisuke Y. Production of cryptotanshinone and ferruginol in cultured cells of Salvia miltiorrhiza. Phytochemistry. 1983; 22(3):721-722.

Miyasaka H, Nasu M, Yamamoto T, Yoneda K. Production of ferruginol by cell suspension cultures of Salvia miltiorrhiza. Phytochemistry. 1985; 24(9):1931-1933.

Ebrahimi SN, Zimmermann S, Zaugg J, Smiesko M, Brun R, Hamburger M. Abietane diterpenoids from Salvia sahendica – Antiprotozoal activity and determination of their absolute configurations. Planta Med. 2013; 29(2):150-156.

Topçu G, Kolak U, Ozturk M, Boga M, Damla Hatipoglu S, Bahadori F, Culhaoglu B, Dirmenci T. Investigation of anticholinesterase activity of a series of Salvia extracts and the constituents of Salvia staminea. Nat Prod J. 2013; 3(1):3-9.

Son KH, Oh HM, Choi SK, Han DC, Kwon BM. Antitumor abietane diterpenes from the cones of Sequoia sempervirens. Bioorg Med Chem Lett. 2005; 15(8):2019-2021.

Wang SY, Wu JH, Shyur LF, Kuo YH, Chang ST. Antioxidant activity of abietane-type diterpenes from heartwood of Taiwania cryptomerioides Hayata. Holzforschung. 2002; 56:487-492.

González-Cardenete MA, Rivas F, Basset R, Stadler M, Hering S, Padrón JM, Zaragozá RJ, Dea-Ayuela MA. Biological profiling of semisynthetic C19-functionalized ferruginol and sugiol analogues. Antibiotics. 2021; 10(2):184-195.

Sharp H, Latif Z, Bartholomew B, Bright C, Jones CD, Sarker SD, Nash RJ. Totarol, totaradiol and ferruginol: Three diterpenes from Thuja plicata (Cupressaceae). Biochem Syst Ecol. 2001; 29(2):215-217.

Iwamoto M, Ohtsu H, Tokuda H, Nishino H, Matsunaga S, Tanaka R. Anti-tumor promoting diterpenes from the stem bark of Thuja standishii

(Cupressaceae). Bioorganic & Medicinal Chemistry. 2001;9(7):1911-21.

Iwamoto M, Minami T, Tokuda H, Ohtsu H, Tanaka R. Potential antitumor promoting diterpenoids from the stem bark of Thuja standishii. Planta Med. 2003; 69(1):69-72.

Ryu YB, Jeong HJ, Kim JH, Kim YM, Park JY, Kim D, Naguyen TT, Park SJ, Chang JS, Park KH, Rho MC. Biflavonoids from Torreya nucifera displaying SARSCoV 3CLpro inhibition. Bioorg Med Chem. 2010; 18(22):7940-7947.

Chao KP, Hua KF, Hsu HY, Su YC, Chang ST. Antiinflammatory activity of sugiol, a diterpene isolated from Calocedrus formosana bark. Planta Med. 2005; 71(4):300-305.

Alharthy SA, Tabrez S, Mirza AA, Zughaibi TA, Firoz CK, Dutta M. Sugiol suppresses the proliferation of human U87 glioma cells via induction of apoptosis and cell cycle arrest. Evid-Based Complement Altern Med. 2022; Article ID 7658899, 5 pp.

Chen XJ, Ni L, Bao MF, Wang L, Cai XH. Abietane diterpenoids from Cephalotaxus lanceolata. Nat Prod Res. 2017; 31(21):2473-2478.

Yoshikawa K, Kokudo N, Tanaka M, Nakano T, Shibata H, Aragaki N, Higuchi T, Hashimoto T. Novel abietane diterpenoids and aromatic compounds from Cladonia rangiferina and their antimicrobial activity against antibiotics resistant bacteria. Chem Pharm Bull. 2008;56(1):89-92.

Tian XD, Min ZD, Xie N, Lei Y, Tian ZY, Zheng QT, Xu RN, Tanaka T, Iinuma M, Mizuno M. Abietane diterpenes from Clerodendron cyrtophyllum. Chem Pharm Bull. 1993; 41(8):1415-1417.

Shyur LF, Huang CC, Lo CP, Chiu CY, Chen YP, Wang SY, Chang ST. Hepatoprotective phytocompounds from Cryptomeria japonica are

potent modulators of inflammatory mediators. Phytochemistry. 2008; 69(6):1348-1358.

Chen YC, Li YC, You BJ, Chang WT, Chao LK, Lo LC, Wang SY, Huang GJ, Kuo YH. Diterpenoids with anti-inflammatory activity from the wood of Cunninghamia konishii. Molecules. 2013; 18(1):682-689.

Chang CI, Chen WC, Shao YY, Yeh GR, Yang NS, Chiang W, Kuo YH. A new labdane-type diterpene from the bark of Juniperus chinensis Linn. at Prod Res. 2008; 22(13):1158-1162.

Okasaka M, Takaishi Y, Kashiwada Y, Kodzhimatov OK, Ashurmetov O, Lin AJ, Consentino LM, Lee KH. Terpenoids from Juniperus polycarpus var. seravschanica. Phytochemistry. 2006;67(24):2635-2640.

Bajpai VK, Kang SC. Isolation and characterization of biologically active secondary metabolites from Metasequoia glyptostroboides Miki Ex Hu. J Food Saf. 2011; 31(2):276-283.

Bajpai VK, Baek KH, Kang SC. Inhibitory effects of sugiol, a biologically active abietane type diterpenoid from Metasequoia glyptostroboides. Rom Biotechnol Lett. 2012; 17(3):7287-7294.

Vivek K, Bajpai VK, Kim NH, Kim K, Kang SC. Antiviral potential of a diterpenoid compound sugiol from Metasequoia glyptostroboides. Pak J Pharm Sci. 2016; 29(3):1077-1080.

Fronza M, Lamy E, Günther S, Heinzmann B, Laufer S, Merfort I. Abietane diterpenes induce cytotoxic effects in human pancreatic cancer cell line MIA PaCa-2 through different modes of action. Phytochemistry. 2012; 78:107-119.

Al Musayeib NM, Amina M, Al-Hamoud GA, Mohamed GA, Ibrahim SR, Shabana S. Plectrabarbene, a new abietane diterpene from Plectranthus barbatusaerial parts. Molecules. 2020; 25(10):2365-2376.

Pereda-Miranda R, Hernández L, López R. A novel antimicrobial abietane-type diterpene from Salvia albocaerulea. Planta Med. 1992; 58(2):223-224.

Jiang X, Chen Y, Yang X, Yan X, Lu F, Liu Z, Li D. Preparative isolation of diterpenoids from Salvia bowleyana Dunn roots by high‐speed counter-current chromatography combined with high‐performance liquid chromatography. J Sep Sci. 2022; 45(9):1570-1579.

Tezuka Y, Kasimu R, Basnet P, Namba T, Kadota S. Aodose reductase inhibitory constituents of the root of Salvia miltiorrhiza Bunge. Chem Pharm Bull. 1997; 45(8):1306-1311.

Shin DS, Shin KD, Yoon YJ, Kim JH, Han DC, Son KH, Kwon BM. Sugiol isolated from the cones of Sequoia sempervirens inhibits growth of DU145 prostate cancer cells via inactivation of JAK2/STAT3 pathway. Cancer Biol. 2007; G-24:321.

Jung SN, Shin DS, Kim HN, Jeon YJ, Yun J, Lee YJ, Kang JS, Han DC, Kwon BM. Sugiol inhibits STAT3 activity via regulation of transketolase and ROSmediated ERK activation in DU145 prostate carcinoma cells. Biochem Pharmacol. 2015; 97(1):38-50.

Zaher AM, Lin J, Arai M. Cytotoxic activity of abietane-type diterpenes isolated from Taxodium distichum against cancer cells adapted to nutrientstarved conditions. Nat Prod Commun. 2020; 15(3):1-6.

Retracted: Xiong WD, Gong J, Xing C. Ferruginol exhibits anticancer effects in OVCAR-3 human ovary cancer cells by inducing apoptosis, inhibition of cancer cell migration and G2/M phase cell cycle arrest. Mol Med Rep. 2017; 16(5):7013-7017.

Retracted: Luo G, Zhou J, Li G, Hu N, Xia X, Zhou H. Ferruginol diterpenoid selectively inhibits human thyroid cancer growth by inducing mitochondrial dependent apoptosis, endogenous reactive oxygen species (ROS) production, mitochondrial membrane potential loss and suppression of mitogen-activated protein kinase (MAPK) and PI3K/AKT signaling pathways. Int Med J Exper Clin Res. 2019; 25:2935-2942.

Roa-Linares VC, Brand YM, Agudelo-Gomez LS, Tangarife-Castaño V, Betancur-Galvis LA, GallegoGomez JC, González MA. Anti-herpetic and antidengue activity of abietane ferruginol analogues synthesized from (+)-dehydro-abietylamine. Eur J Med Chem. 2016; 108:79-88.

Jia Y, Wu C, Zhang B, Zhang Y, Li J. Ferruginol induced apoptosis on SK-Mel-28 human malignant melanoma cells mediated through P-p38 and NF-κB. Hum Exper Toxicol. 2019; 38(2):227-238.

Rengarajan T, Keerthiga S, Duraikannu S, Periyannan V. Exploring the anticancer and anti-inflammatory activities of ferruginol in MCF-7 breast cancer cells. Cancer Plus. 2020; 1(4):1-12.

Lin HL, Chen PR, Mao CC, Zheng WE, Wang JQ. Ferruginol-induced apoptosis in human colon cancer cells (HCT-116) through the mitochondria-mediated apoptotic pathway. Pharmacogn Mag. 2021; 17(74):244-249.

González MA, Clark J, Connelly M, Rivas F. Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group. Bioorg Med Chem Lett. 2014; 24(22):5234-5237.

Sousa FT, Nunes C, Romano CM, Sabino EC, González-Cardenete MA. Anti-Zika virus activity of several abietane-type ferruginol analogues. J São Paulo Inst Trop Med. 2020; 62:1-4.

González-Cardenete MA, Hamulić D, Miquel-Leal FJ, González-Zapata N, Jimenez-Jarava OJ, Brand YM, Restrepo-Mendez LC, Martinez-Gutierrez M, Betancur-Galvis LA, Marín ML. Antiviral profiling of C-18 or C-19 functionalized semi-synthetic abietane diterpenoids. J Nat Prod. 2022; 85(8):2044-2051.

Saijo H, Kofujita H, Takahashi K, Ashitani T. Antioxidant activity and mechanism of the abietanetype diterpene ferruginol. Nat Prod Res. 2015; 29(18):1739-1743.

Areche C, Theoduloz C, Yáñez T, Souza‐Brito AR, Barbastefano V, de Paula D, Ferreira AL, Schmeda‐Hirschmann G, Rodríguez JA. Gastroprotective activity of ferruginol in mice and rats: Effects on gastric secretion, endogenous prostaglandins and non‐protein sulfhydryls. J Pharm Pharmacol. 2008; 60(2):245-251.

Wang X, Cao G, Ding D, Li F, Zhao X, Wang J, Yang Y. Ferruginol prevents degeneration of dopaminergic neurons by enhancing clearance of α-synuclein in neuronal cells. Fitoterapia. 2022; 156:105066.

Zhang X, Li X, Wang C, Li H, Wang L, Chen Y, Feng J, Ali Alharbi S, Deng Y. Ameliorative effect of ferruginol on isoprenaline hydrochloride‐induced myocardial infarction in rats. Environ Toxicol. 2020;1-8. DOI: 10.1002/tox.23030.

Li W, Cao J, Wang X, Zhang Y, Sun Q, Jiang Y, Yao J, Li C, Wang Y, Wang W. Ferruginol restores SIRT1-PGC-1α-mediated mitochondrial biogenesis and fatty acid oxidation for the treatment of DOX-induced cardiotoxicity. Front Pharmacol. 2021; 12:1-13.

Zhu XY, Zhang CL, Lin Y, Dang MY. Ferruginol alleviates inflammation in dextran sulfate sodiuminduced colitis in mice through inhibiting COX-2, MMP-9 and NF-κB signaling. Asian Pac J Trop Biomed. 2020; 10(7):308-315.

Bajpai VK, Sonwal S, Hwang SK, Shukla S, Khan I, Dey DK, Chen L, Simal-Gandara J, Xiao J, Huh YS, Han YK. Sugiol, a diterpenoid: Therapeutic actions and molecular pathways involved. Pharmacol Res. 2021; 163:105313.

Hao C, Zhang X, Zhang H, Shang H, Bao J, Wang H, Li Z. Sugiol (12-hydroxyabieta-8, 11,13-trien-7-one) targets human pancreatic carcinoma cells (Mia-PaCa2) by inducing apoptosis, G2/M cell cycle arrest, ROS production and inhibition of cancer cell migration. J BUON. 2018; 23(1):205-210.

Wang Y, Shi LY, Qi WH, Yang J, Qi Y. Anticancer activity of sugiol against ovarian cancer cell line SKOV3 involves mitochondrial apoptosis, cell cycle arrest and blocking of the RAF/MEK/ERK signalling pathway. Arch Med Sci. 2020; 16(2):428-435.

Zhao H, Zhang X. Sugiol suppresses the growth, migration, and invasion of human endometrial cancercells via induction of apoptosis and autophagy. 3 Biotech. 2021; 11(5):1-9.

Scariot DB, Volpato H, Fernandes ND, Soares EF, Ueda-Nakamura T, Dias-Filho BP, Din ZU, RodriguesFilho E, Rubira AF, Borges O, Sousa MD. Activity and cell-death pathway in leishmania infantum induced by sugiol: Vectorization using yeast cell wall particles obtained from Saccharomyces cerevisiae. Front Cell Infect Microbiol. 2019; 9:208-228.

Lin CN, Huang AM, Lin KW, Hour TC, Ko HH, Yang SC, Pu YS. Xanthine oxidase inhibitory terpenoids of Amentotaxus formosana protect cisplatin-induced cell death by reducing reactive oxygen species (ROS) in normal human urothelial and bladder cancer cells. Phytochemistry. 2010;71:2140-146.

Bajpai VK, Kang SC. A diterpenoid sugiol from Metasequoia glyptostroboides with α-glucosidase and tyrosinase inhibitory potential. Bangladesh J Pharmacol. 2014; 9(3):312-316.

Bajpai VK, Sharma A, Kang SC, Baek KH. Antioxidant, lipid peroxidation inhibition and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from Metasequoia glyptostroboides. Asian Pac J Trop Med. 2014; 7(1):9-15.

Chan EWC, Wong SK, Chan HT. An overview of the phenolic constituents and pharmacological properties of extracts and compounds from Lagerstroemia speciosaleaves. Trop J Nat Prod Res. 2022; 6(4):470-479.

Chan EWC, Wong SK, Chan HT. Acacetin and chrysoeriol: A short review of the chemistry, plant sources, bioactivities and structure-activity

relationships of these methylated flavones. Trop J Nat Prod Res. 2022; 6(1):1-7.

Inoue N, Ohinata H, Matsuzaki T, Yonei Y, Kitagawa K, Harada F. Purification of ferruginol. Japanese Patent, JPH05294878A, November 1993.

Evans David A, Nguyen UY. Cosmetic composition comprising a phenolic diterpene of the ferruginol type. New Zealand Patent, NZ261825(A), April 1996.

Gonzalez Cardenete MA, Betancur Galvis LA. Ferruginol analogues as antiviral agents. Spanish Patent, ES2586505B1, July 2017.

Hattori T, Katagiri T, Kanamaru A, Kato T. Preparation for external use for skin whitening. Japanese Patent, JPH11139931A, May 1999.