Phytochemical screening and Evaluation of Antioxidant and Antimicrobial Activity of Solanum linnaeanum Extracts doi.org/10.26538/tjnpr/v6i2.5
Main Article Content
Abstract
Solanum linnaeanum belongs to the Solanaceae family and is used in traditional medicine for the treatment of various ailments, including inflammatory diseases. The present study aimed to evaluate the phytochemical profile and assess the in vitro antioxidant and antimicrobial activity of the crude hydroethanol extract and the respective chloroform, ethyl acetate, n-butanol and residual aqueous fractions of the leaves, stem bark, and root bark of S. linnaeanum. Qualitative and quantitative phytochemical analyses were performed using standard methods, whereas the antioxidant activity was estimated using DPPH, Phosphomolybdenum, and Ferric Reducing Antioxidant Power (FRAP) assays. Antimicrobial activity was determined by the agar disk diffusion method against Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Candida albicans. Qualitative phytochemical analysis revealed the presence of condensed tannins, coumarins, flavonoids, and phenols in all extracts. The ethyl acetate fraction of the leaves showed the highest contents of total phenols (49.527±0.178 mg GAE g-1 ), total flavonoids (28.743±0.145 mg QE g-1 ), and condensed tannins (12.133±0.036 mg CyaE g-1 ). The ethyl acetate fraction of the leaves demonstrated also the highest DPPH radical scavenging power (IC50=347.533±4.219 µg mL-1 ), highest reduction of the phosphomolybdenum complex (35.091±0.150%) and the highest ferric reducing antioxidant power (322.070±3.375 µMFe2+ g-1 ). S. linnaeanum extracts and fractions did not show significant antimicrobial activity against the studied microbial strains. The results contributed to reveal some phytochemical characteristics of this species, and suggest that S. linnaeanum is a promising plant that deserves further studies for its exploration as a new source of compounds with antioxidant activity.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Pinto E, Amorozo M, Furlan A. Folk knowledge about medicinal plants within rural communities in Atlantic Forest, Itacaré, Bahia State, Brazil. Acta Bot Brasilica. 2006; 20(4):751-762.
Maridass M and De Brito J. Origins of Plant Derived Medicines. Ethnobot Leafl. 2008;12:373-387.
Inamdar N, Edalat S, Kotwal V, Pawar S. Herbal drugs in milieu of modern drugs. Int J Green Pharm. 2008; 2(1):1-8.
Senkoro A, Barbosa F, Maquia I, Moura I. Study and conservation of medicinal plants in Mozambique. Int Congr: Tropical knowledge in Mozambique, History, Memory and Science. Lisbon, 24-26 october 2012.
Zadra M, Piana M, De Brum TF, Boligon AA, De Freitas RB, Machado MM, Stefanello ST, Soares FAA, Athayde ML. Antioxidant activity and phytochemical composition of the leaves of solanum guaraniticum A. St.-Hil. Molecules. 2012;17(11):12560-12574.
Kaunda JS, Zhang YJ. The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review [Internet]. Vol. 9, Natural Products and Bioprospecting. Springer Singapore; 2019. 77-137 p. Available from: https://doi.org/10.1007/s13659-019-0201-6
Sbhatu DB and Abraha HB. Preliminary Antimicrobial Profile of Solanum incanum L.: A Common Medicinal Plant. EvidBased Compl Altern Med. 2020; 2020:1-6.
Mahomoodally FM and Ramcharun S. In vitro Kinetic of Inhibition of Lipase, Antioxidant Activity, Glucose Entrapment and Polyphenolic Content of Solanum linnaeanum. J Biol Act Prod from Nat. 2015; 5(6):383-396.
Kaunda JS and Zhang YJ. Chemical constituents from the fruits of Solanum incanum L. Biochem Syst Ecol [Internet]. 2020; 90:104031.
Elizalde-Romero CA, Montoya-Inzunza LA, ContrerasAngulo LA, Heredia JB, Gutiérrez-Grijalva EP. Solanum Fruits: Phytochemicals, Bioaccessibility and Bioavailability, and Their Relationship With Their Health-Promoting Effects. Front Nutr. 2021; 8:1-9.
Gurbuz N, Karabey F, Ozturk TK, Kilinç A, Frary A, Doganlar S. Glycoalkaloid isolation from Solanum linnaeanum berries. Fruits. 2015; 70(6):371-375.
Silva TMS da, Carvalho MG de, Braz-Filho R, Agra M de F. Occurrence of flavones, flavonols and their glycosides in species of the genus Solanum (Solanaceae). Quim Nova. 2003; 26(4):517-522.
Geetha TS and Geetha N. Phytochemical screening, quantitative analysis of primary and secondary metabolites of Cymbopogan citratus (DC) stapf. Leaves from Kodaikanal hills, Tamilnadu. Int J PharmTech Res. 2014; 6(2):521-529.
Prashant T, Kumar B, Kaur M, Gurpreet Kaur HK. Phytochemical screening and extraction: A Review. Int Pham Sci. 2011; 1(1):98-106.
Bargah RK. Preliminary test of phytochemical screening of crude ethanolic and aqueous extract of Moringa pterygosperma Gaertn. J Pharmacogn Phytochem [Internet]. 2015; 4(1):7-9.
Iikasha A, Bock R, Mumbengegwi D. Phytochemical screening and antibacterial activity of selected medicinal plants against laboratory diarrheal bacteria strains. J Pharmacogn Phytochem. 2017; 6(5):2337-2342.
Amorim ELC De, Almeida de Castro VTN de, de Melo JG, Chernichiarro Correa AJ, Silva Peixoto Sobrinho TJ da. Standard Operating Procedures (SOP) for the Spectrophotometric Determination of Phenolic Compounds Contained in Plant Samples. INTECH. 2012. 47-66 p.
Woisky R and Salatino A. Analisis of Propolis: some parameters and procedures for chemical quality control. J Apic Res. 1998; 37(2):99-105.
Zemmouri H, Ammar S, Boumendjel A, Messarah M, El Feki A, Bouaziz M. Chemical composition and antioxidant activity of Borago officinalis L. leaf extract growing in Algeria. Arab J Chem [Internet]. 2014; 12(8):1954-1963.
Gawron-Gzella A, Dudek-Makuch M, Matławska I. DPPH radical scavenging activity and phenolic compound content in different leaf extracts from selected blackberry species. Acta Biol Cracoviensia Ser Bot. 2012; 54(2):32-38.
Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem. 1999; 269:337-341.
Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L. Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochim Biophys Acta - Gen Subj. 2005; 1721:174-184.
Klančnik A, Piskernik S, Jeršek B, Možina SS. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J Microbiol Meth. 2010; 81:121-126.
Farjana A, Zerin N, Kabir MS. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria. Asian Pac J Trop Dis. 2014; 4(2):920-923.
Blankemeyer JT, McWilliams ML, Rayburn JR, Weissenberg M, Friedman M. Developmental toxicology of solamargine and solasonine glycoalkaloids in frog embryos. Food Chem Toxicol. 1998; 36:383-389.
Gobbo-Neto L and Lopes NP. Medicinal plants: Factors of influence on the content of secondary metabolites. Quim Nova. 2007; 30(2):374-381.
Yusuf AA, Lawal B, Abubakar AN, Berinyuy EB, Omonije YO, Umar SI, Shebe MN, Alhaji YM. In-vitro antioxidants, antimicrobial and toxicological evaluation of Nigerian Zingiber officinale. Clin Phytosci. 2018; 4(12):1-8.
Harbone J and Williams C. Advances in flavonoid research since 1992. Phytochem. 2000; 55:481-504.
Oliveira LMB, Bevilaqua CML, Costa CTC, Macedo ITF, Barros RS, Rodrigues ACM, Camurça-Vasconcelos ALF, Morais SM, Lima YC, Vieira LS, Navarro AMC. Anthelmintic activity of Cocos nucifera L. against sheep gastrointestinal nematodes. Vet Parasitol. 2009;159(1):55-59.
Haslam E. Vegetable tannins - Lessons of a phytochemical lifetime. Phytochemistry. 2007;68:2713-21.
Alves CQ, David JM, David JP, Bahia M V., Aguiar RM. Methods for determining in vitro antioxidant activity on organic substrates. Quim Nova. 2010; 33(10):2202-2210.
Andrade CA De, Costa CK, Bora K, Miguel MD, Gomes Miguel O, Kerber VA. Determination of the phenolic content and evaluation of the antioxidant activity of Acacia podalyriifolia A. Cunn. ex G. Don, Leguminosaemimosoideae. Rev Bras Farmacogn. 2007; 17(2):231-235.
Lu M, Yuan B, Zeng M, Chen J. Antioxidant capacity and major phenolic compounds of spices commonly consumed inChina. Food Res Int [Internet]. 2011; 44:530-536.
Gonçalves S, Gomes D, Costa P, Romano A. The phenolic content and antioxidant activity of infusions from Mediterranean medicinal plants. Ind Crops Prod. 2013; 43:465-471.
Kchaou W, Abbès F, Blecker C, Attia H, Besbes S. Effects of extraction solvents on phenolic contents and antioxidant activities of Tunisian date varieties (Phoenix dactylifera L.). Ind Crops Prod [Internet]. 2013; 45:262-269.
Balestrin L, Dias JFG, Miguel OG, Dall’Stella DSG, Miguel MD. Contribution to the phytochemical study of Dorstenia multiformis Miquel (Moraceae) with an approach in antioxidant activity. Rev Bras Farmacogn. 2008; 18(2):230-235.
Lee YJ, Kim DB, Lee JS, Cho JH, Kim BK, Choi HS, Lee BY, Lee OK. Antioxidant activity and anti-adipogenic effects of wild herbs mainly cultivated in Korea. Molecules. 2013; 18:12937-12950.
Shalab E and Shanab S. Antioxidant compouds, assays of determination and mode of action. African J Pharm Pharmacol [Internet]. 2013; 7(10):528-539.
Liang N and Kitts DD. Antioxidant property of coffee components: Assessment of methods that define mechanism of action. Molecules. 2014; 19:19180-19208.
Holetz FB, Pessini GL, Sanches NR, Cortez AG, Nakamura CV, Prado B. Screening of Some Plants Used In the Brazilian Folk Medicine for the Treatmente of Infectious Diseases. Mem Inst Oswaldo Cruz. 2002; 97(7):1027-1031.
Jepkoech KE and Gakunga NJ. Antimicrobial activity and phytochemical screening of Solanum incanum fruit extract against clinical samples of Staphylococcus aureus collecting from Nakuru Provincial General Hospital Laboratory , Kenya. Int Res J Med Biomed Sci. 2017; 2(1):1-8.
Soetan KO, Oyekunle MA, Aiyelaagbe OO, Fafunso MA. Evaluation of the antimicrobial activity of saponins extract of Sorghum Bicolor L. Moench. Afr J Biotechnol. 2006; 5(23):2405-2407.
ushnie TPT, Cushnie B, Lamb AJ. Alkaloids : An overview of their antibacterial , antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents [Internet]. 2014; 44:377-386.
ampos-Xolapa N, Pérez-Ramos J, Esquivel-Campos A, PérezGozález C, Sánchez-Pérez L, Pérez-Gutiérrez S. Cytotoxic and Antimicrobial Activities of Quinones Isolated from Different Organism. IntechOpen. 2021. 1-37 p.
Zadra M, Piana M, Boligon AA, De Brum TF, Rossato L, Alves SH, Dalmolin TV, De Campos MMA, Athayde ML. In vitro evaluation of the antimicrobial and antimycobacterial activities of solanum guaraniticum A. St.-Hil. Leaves. J Appl Pharm Sci. 2013; 3(9):19-23.
Cowan MM. Plant products as antimicrobial agents. Am Soc Microbiol. 1999; 12(4):564-582.