Potential Extracts of Melastomataceae Species from Mount Merapi National Park as Sunprotection Material with Antioxidation and Antiglycation Activities

http://www.doi.org/10.26538/tjnpr/v7i1.14

Authors

  • Sendy Junedi Faculty of Biotechnology, Universitas Atma Jaya Yogyakarta, Yogyakarta 55281, Indonesia.
  • Ari Nurwijayanto Mount Merapi National Park, Directorate General of Nature Resources and Ecosystem Conservation, Ministry of Environment and Forestry, Yogyakarta 55582, Indonesia.
  • Desy D. Simamora Faculty of Biotechnology, Universitas Atma Jaya Yogyakarta, Yogyakarta 55281, Indonesia.
  • Angela M. Palimbongan Faculty of Biotechnology, Universitas Atma Jaya Yogyakarta, Yogyakarta 55281, Indonesia.
  • Ines S. Arsiningtyas Faculty of Biotechnology, Universitas Atma Jaya Yogyakarta, Yogyakarta 55281, Indonesia.

Keywords:

Antiglycation, Antioxidation, Clidemia hirta, Melastoma affine, Phytochemical properties, Sun protection factor

Abstract

Ethanol extracts from the leaves of Clidemia hirta (L.) D. Don., and Melastoma affine D. Don., growing in Mount Merapi National Park, Indonesia, had high  antioxidant activity similar to ascorbic acid. Natural substances with high  antioxidant activity potentially inhibit UV-induced skin photoaging. This study  aimed to investigate the sun protection factor (SPF) and antiglycation activity of  C. hirta and M. affine ethanol extracts to identify and obtain candidate  hotoprotective ingredients for sunscreen products. Proximate analysis of extract  simplicial was performed for standardization, and their secondary  metabolites quantified to understand their bioactivities. Flavonoids, alkaloids,  and saponins were quantified using the aluminum chloride, bromocresol green,  and vanillin-sulfuric acid methods, respectively. Phenolic compounds  and tannins were quantified using the Folin-Ciocalteu method. The C. hirta  extract showed a higher SPF value in UV spectrophotometry, and antiglycation  activity through bovine serum albumin-glucose (BSAglucose) method, than the  M. affine extract. An antioxidant assay using the 2,2-diphenyl-1- picrylhydrazyl  (DPPH) radical scavenging method confirmed that the C. hirta and M. affine extracts were more potent and had slightly lower antioxidant activity,  respectively, than ascorbic acid. The high bioactivity of C. hirta extract was likely  due to phenolic compounds, flavonoids, and tannins, because these metabolites  were more abundant in C. hirta extract than in M. affine extract.  These results indicated that the ethanol extract of C. hirta leaves has the  potential to be developed as an ingredient of sunscreen products for skin  photoprotection. 

References

World Health Organization. Global solar UV index: a practical guide : a joint recommendation of World Health Organization, World Meteorological Organization, United Nations Environment Programme, International Commission on Non-Ionizing Radiation Protection. Geneva: WHO; 2002.

Valejo Coelho MM, Matos TR, Apetato M. The dark side of the light: mechanisms of photocarcinogenesis. Clin Dermatol. 2016;34(5):563–70.

Liu-Smith F, Jia J, Zheng Y. UV-induced molecular signaling differences in melanoma and non-melanoma skin cancer. In: Ahmad SI (Eds.). Ultraviolet light in human health, diseases and environment. Cham: Springer International Publishing; 2017; 27– 40 p

Lee EJ, Kim JY, Oh SH. Advanced glycation end products (AGEs) promote melanogenesis through receptor for AGEs. Sci Rep. 2016 Jun 13;6(1):1–11.

Sell DR, Monnier VM. Molecular basis of arterial stiffening: role of glycation – A Mini- Review. GER. 2012;58(3):227–37.

Dale Wilson B, Moon S, Armstrong F. Comprehensive review of ultraviolet radiation and the current status on sunscreens. J Clin Aesthet Dermatol. 2012;5(9):18–23.

Latha MS, Martis J, Shobha V, Sham Shinde R, Bangera S, Krishnankutty B, Bellary S, Varughese S, Rao P, Naveen Kumar BR. Sunscreening agents. J Clin Aesthet Dermatol. 2013;6(1):16– 26.

Radice M, Manfredini S, Ziosi P, Dissette V, Buso P, Fallacara A, Vertuani S. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia. 2016;114:144–162.

Saewan N, Jimtaisong A. Natural products as photoprotection. J Cosmet Dermatol. 2015;14(1):47–63.

Donglikar M, Deore S, Deore S, Deore S. Sunscreens: A review. Pharmacogn J. 2016;8(3):171–179.

de Lima Cherubim D, Buzanello Martins C, Oliveira Fariña L, da Silva de Lucca R. Polyphenols as natural antioxidants in cosmetics applications. J Cosmet Dermatol. 2020;19(1):33–37.

Ramadan A, Kamel G, Shokry A, El-Shiekh R. A potent antiageing and immunomodulatory activity of apricot seed standardized extract and its major compound; amygdalin. Trop J Nat Prod Res. 2020;4(10):728–733.

Nurwijayanto A, Na’iem M, Syahbudin A, Wahyuono S. Eksplorasi antioksidan tumbuhan obat yang berasal dari Taman Nasional Gunung Merapi Yogyakarta Indonesia. J Indones Med

Plant. 2020;13(1):25–31.

Kementerian Kesehatan Republik Indonesia. Farmakope Herbal Indonesia Edisi II. Jakarta: Kementerian Kesehatan Republik Indonesia; 2017. 526–531 p.

Ahmed R, Tariq M, Hussain M, Andleeb A, Masoud MS, Ali I, et al. Phenolic contents- based assessment of therapeutic potential ofSyzygium cumini leaves extract. PLOS ONE. 2019;14(8):e0221318.

Galvão MAM, Arruda AO de, Bezerra ICF, Ferreira MRA, Soares LAL. Evaluation of the Folin-Ciocalteu method and quantification of total tannins in stem barks and pods from Libidibia ferrea (Mart. ex Tul) L. P. Queiroz. Braz arch biol technol. 2018;61.

Tabasum S, Khare S, Jain K. Spectrophotometric quantification of total phenolic, flavonoid, and alkaloid contents of Abrus precatorius L. Seeds. Asian J Pharm Clin Res. 2016;9:371–374.

Wu X, Jia L, Wu J, Liu Y, Kang H, Liu X, Li P, He P, Tu Y, Li B. Simultaneous determination and quantification of triterpene saponins from Camellia sinensis seeds Using UPLC-PDA- QTOFMS/MS. Molecules. 2019;24(20):3794.

Mansur JS, Breder MNR, Mansur MCA, Azulay RD. Determinação do fator de proteção solar por espectrofotometria. An Bras Dermatol Rio De Janeiro. 1986;61:121–124.

Ranjit R, Shrestha R, Paudel S, Maharjan J, Devkota B, Bhattarai S, Pandey B. Evaluation of biological properties and isolation of metabolites of Lichens of Parmeliaceae family from Himalayan Region of Nepal. Trop J Nat Prod Res. 2019;3(8):265–271.

Kim HY, Kim K. Protein glycation inhibitory and antioxidative activities of some plant extracts in vitro. J Agric Food Chem. 2003;51(6):1586–91.

Saewan N, Jimtaisong A. Photoprotection of natural flavonoids. J App Pharm Sci. 2013;3(9):129–41.

Figueiredo CCM, da Costa Gomes A, Granero FO, Bronzel Junior JL, Silva LP, Ximenes VF, da Silva RMG. Antiglycation and antioxidant activities of the crude extract and saponin fraction of Tribulus terrestris before and after microcapsule release. J Integr Med. 2022;20(2):153–62.

Silva RMG, Martins GR, Nucci LMB, Granero FO, Figueiredo CCM, Santiago PS, Silva LP. Antiglycation, antioxidant, antiacne, and photoprotective activities of crude extracts and triterpene saponin fraction of Sapindus saponaria L. fruits: An in vitro study. Asian Pac J Trop Biomed. 2022;12(9):391-399.

Ebrahimzadeh MA, Enayatifard R, Khalili M, Ghaffarloo M, Saeedi M, Yazdani Charati J. Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iran J Pharm Res. 2014;13(3):1041–7.

Choquenet B, Couteau C, Paparis E, Coiffard LJM. Quercetin and rutin as potential sunscreen agents: determination of efficacy by an in vitro method. J Nat Prod. 2008;71(6):1117–8.

Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol. 1988;124(6):869–871.

Arteaga JF, Ruiz-Montoya M, Palma A, Alonso-Garrido G, Pintado S, Rodríguez-Mellado JM. Comparison of the simple cyclic voltammetry (CV) and DPPH Assays for the determination of antioxidant capacity of active principles. Molecules. 2012;17(5):5126–38.

Omodamiro OD, Ajah O, Ewa-ibe C. Evaluation of antioxidant potential and anti-diabetic effect of ethanol seed extract of Garcinia kola (Bitter Kola) in albino rat. J Med Herbs Ethnomed. 2020;6:56– 60.

Asgharpour Dil F, Ranjkesh Z, Goodarzi MT. A systematic review of antiglycation medicinal plants. Diabetes Metab Syndr. 2019;13(2):1225–9.

Bairagi J, Saikia PJ, Boro F, Hazarika A. A review on the ethnopharmacology, hytochemistry and pharmacology of Polygonum hydropiper Linn. J Pharm Pharmacol. 2022;74(5):619– 645.

Kaewnarin K, Rakariyatham N. Antioxidant and antiglycation activities of some edible and medicinal plants. Chiang Mai J Sci. 2014;41(1):105–16.

Crascì L, Lauro MR, Puglisi G, Panico A. Natural antioxidant polyphenols on inflammation management: Anti-glycation activity vs metalloproteinases inhibition. Crit Rev Food Sci Nutr. 2018;58(6):893–904.

Azahar NF, Gani SSA, Hasanah U, Bawon P. Photo-protective and anti-oxidative potential in the leaves of three different Melastomataceae family species. J Mech Cont & Math Sci. 2019;(1):236–247.

Brito VLG, Sazima M. Tibouchina pulchra (Melastomataceae): reproductive biology of a tree species at two sites of an elevational gradient in the Atlantic rainforest in Brazil. Plant Syst Evol. 2012;298(7):1271–1279.

Published

2023-02-01

How to Cite

Junedi, S., Nurwijayanto, A., Simamora, D. D., Palimbongan, A. M., & Arsiningtyas, I. S. (2023). Potential Extracts of Melastomataceae Species from Mount Merapi National Park as Sunprotection Material with Antioxidation and Antiglycation Activities: http://www.doi.org/10.26538/tjnpr/v7i1.14. Tropical Journal of Natural Product Research (TJNPR), 7(1), 2172–2177. Retrieved from https://tjnpr.org/index.php/home/article/view/1547

Most read articles by the same author(s)