De Novo Whole Genome Sequencing Data of Pseudomonas aeruginosa ATCC10145, an Opportunistic Pathogen doi.org/10.26538/tjnpr/v6i2.2

Main Article Content

Mohammad A. Al-Kafaween
Hamid Ali. Nagi Al-Jamal
Abu Bakar Mohd Hilmi

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that is commonly found in nosocomial infections. P. aeruginosa is one of the most frequent model bacterial species, with the genomes of hundreds of strains of this species have been sequenced to date. This study aimed to analyze the whole genome sequence of P. aeruginosa ATCC® 10145TM . The whole genome of the P. aeruginosa ATCC® 10145TMwas sequenced by shotgun sequencing using Genomic DNA Mini Kit, genome AnalyzerIIX with 100-bp paired-end reads and genomic DNA extracted using the MasterPure complete DNA and RNA purification kit and complete genome sequence analysis was done. The genome of the P. aeruginosa ATCC® 10145TM was sequenced on the IlluminaMiseq platform. The raw sequenced reads were assessed for quality using FastQC v.0.11.5 and filtered for low quality reads and adapter regions using Trimmomatic v.0.36. The de novo genome assembly was made with CLC Genomics Workbench 5.1 and annotated using Prokaryotic Genome Annotation Pipeline (PGAP) v4.10. Here, we report the whole genome sequence of P. aeruginosa ATCC® 10145TM strain. All filtered and assembled genomic data sequences have been submitted to National Centre for Biotechnology Information (NCBI) and can be located at DDBJ/ENA/GenBank under the accession of VAOQ00000000 (UniSZA) and BioProject number PRJNA533327 and ID: 533327). The high-quality P.aeruginosa ATCC® 10145TM genome sequence provides a reference for further research including investigation of horizontal gene transfer or comparative genomics. 

Article Details

How to Cite
A. Al-Kafaween, M., Ali. Nagi Al-Jamal, H., & Bakar Mohd Hilmi, A. (2022). De Novo Whole Genome Sequencing Data of Pseudomonas aeruginosa ATCC10145, an Opportunistic Pathogen: doi.org/10.26538/tjnpr/v6i2.2. Tropical Journal of Natural Product Research (TJNPR), 6(2), 176–179. Retrieved from https://tjnpr.org/index.php/home/article/view/154
Section
Articles

References

Hizbullah M, Farouq A, Baki A, Dabai M, Nafi’u A, Nata’ala M. Studies on bio-color production by Pseudomonas aeruginosa isolated from soil. J Adv Microbiol. 2018; 5(3):1-12.

Al-kafaween M and Hilmi A. Evaluation of the effect of different growth media and incubation time on the suitability of biofilm formation by Pseudomonas aeruginosa and Streptococcus pyogenes. Appl Environ Biotechnol. 2022; 6(2):19-26.

Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016; 14(9):563.

Wu H, Moser C, Wang H-Z, Høiby N, Song Z-J. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015; 7(1):1-7.

Al-kafaween MA, Hilmi AB, Al-Jamal HA, Al-Groom RM, Elsahoryi NA, Al-Sayyed H. Effect of kelulut honey on biofilm formation of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli and results in differential expression of virulence gene. Jordan J Pharm Sci. 2021; 14(1):9-26.

Tarawneh O, Alwahsh W, Abul-Futouh H, Al-Samad LA, Hamadneh L, Abu Mahfouz H. Determination of Antimicrobial and Antibiofilm Activity of Combined LVX and AMP Impregnated in p (HEMA) Hydrogel. Appl Sci. 2021; 11(18):8345-8352.

Huwaitat R, Coulter SM, Porter SL, Pentlavalli S, Laverty G. Antibacterial and antibiofilm efficacy of synthetic polymyxin‐mimetic lipopeptides. J Pept Sci. 2021; 113(1):24-38.

Al-Bakri AG and Mahmoud NN. Photothermal-induced antibacterial activity of gold nanorods loaded into polymeric hydrogel against Pseudomonas aeruginosa biofilm. Molecules. 2019; 24(14):61-75.

Obaidat RM, Bader A, Al-Rajab W, Abu Sheikha G, Obaidat AA. Preparation of mucoadhesive oral patches containing tetracycline hydrochloride and carvacrol for treatment of local mouth bacterial infections and candidiasis. Sci Pharm. 2011; 79(1):197-212.

Al-kafaween MA, Hilmi AB, Al-Jamal HA. The Beneficial Effects of Stingless Bee Kelulut Honey Against Pseudomonas aeruginosa and Streptococcus pyogenes Planktonic and Biofilm. Trop J Nat Prod Res. 2021; 5(10):1788-1796.

Mahajan‐Miklos S, Rahme LG, Ausubel FM. Elucidating the molecular mechanisms of bacterial virulence using nonmammalian hosts. Mol Microbiol. 2000; 37(5):981-988.

Magharbeh MK, Khleifat KM, Alkafaween MA, Saraireh R, Qaralleh H, El-Hasan T. Biodegradation of Phenol by Bacillus simplex: Characterization and Kinetics Study. Appl Environ Biotechnol. 2021; 6(2):1-12.

Al-Kafaween MA, Hilmi AB, Al-Jamal HN, Elsahoryi NA, Jaffar N, Zahri MK. Pseudomonas Aeruginosa and Streptococcus Pyogenes Exposed to Malaysian Trigona Honey In Vitro Demonstrated Downregulation of Virulence Factor. Iran J Biotechnol. 2020; 18(4):25-32.

Al-Kafaween MA, Al-Jamal HN, Hilmi AB, Elsahoryi NA, Jaffar N, Zahri MK. Antibacterial properties of selected Malaysian Tualang honey against Pseudomonas aeruginosa and Streptococcus pyogenes. Iran J Microbiol. 2020; 12(6):56-65.

Kawalek A, Kotecka K, Modrzejewska M, Gawor J, JaguraBurdzy G, Bartosik AA. Genome sequence of Pseudomonas aeruginosa PAO1161, a PAO1 derivative with the ICE Pae 1161 integrative and conjugative element. BMC Genomics. 2020; 21(1):1-12.

Al-kafaween MA, Hilmi AB, Jaffar N, Al-Jamal HA, Zahri MK. Determination of optimum incubation time for formation of Pseudomonas aeruginosa and Streptococcus pyogenes biofilms in microtiter plate. Bull Natl Res Cent. 2019; 43(1):1-5.

Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa –Mechanisms, epidemiology and evolution. Drug Resist Updat. 2019; 44(2):10-19.

Magalhães B, Valot B, Abdelbary MM, Prod'hom G, Greub G, Senn L. Combining standard molecular typing and whole genome sequencing to investigate Pseudomonas aeruginosaepidemiology in intensive care units. Front Pub Health. 2020; 8(3):19-27.

Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY. Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Res Spec Publ. 2010; 39(1):596-600.

Stover CK, Pham XQ, Erwin A, Mizoguchi S, Warrener P, Hickey M. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000; 40(6):959-964.

Kumagai Y, Yoshizawa S, Nakamura K, Ogura Y, Hayashi T, Kogure K. Complete and draft genome sequences of eight oceanic Pseudomonas aeruginosa strains. Genome Announc. 2017; 5(44):12-17.

Tarawneh O, Hamadneh I, Huwaitat R, Al-Assi AR, El Madani A. Characterization of chlorhexidine-impregnated cellulose-based hydrogel films intended for the treatment of periodontitis. Biomed Res Int. 2021; 2(5):1-7.

Al-kafaween MA, Hilmi AB, Jaffar N, Al-Jamal HA, Zahri MK, Jibril FI. Antibacterial and Antibiofilm activities of Malaysian Trigona honey against Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan J Biol Sci. 2020; 13(1):69-76.

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinfo. 2005; 21(18):3674-3686.

Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016; 44(14):6614-6624.

Al-kafaween MA, Hilmi AB, Jaffar N, Al-Jamal HA, Zahri MK, Amonov M. Effects of Trigona honey on the Gene Expression Profile of Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan J Biol Sci. 2020; 13(2):133-138.

Yin Y, Withers TR, Johnson SL, Yu HD. Draft genome sequence of a mucoid isolate of Pseudomonas aeruginosastrain C7447m from a patient with cystic fibrosis. Genome Announc. 2013; 1(5):7-13.

Al-kafaween MA, Hilmi AB, Al-Jamal HA, Al-Groom RM, Elsahoryi NA, Al-Sayyed H. Potential Antibacterial Activity of Yemeni Sidr Honey Against Pseudomonas aeruginosa and Streptococcus pyogenes. Anti-Infect Agents. 2021; 19(4):51-65.