Expression of algD Gene in Single- and Dual-Species Biofilms of Pseudomonas aeruginosa and Staphylococcus aureus Under Starvation Stress http://www.doi.org/10.26538/tjnpr/v7i1.10
Main Article Content
Abstract
Dual-species biofilms of Pseudomonas aeruginosa and Staphylococcus aureus generate difficultto-treat illnesses. Nutrition stress in biofilms affects physiology, microbial metabolism, and species interactions, impacting bacteria growth and survival. Furthermore, the function of alginate, which is encoded by the algD gene, in the production of biofilms has been established. The present study aimed at investigating the impact of starvation on algD gene expression in single-species biofilm of P. aeruginosa and dual-species biofilms of P. aeruginosa and S. aureus from hospital sewage. A total of six P. aeruginosa and six S. aureus isolates were obtained from the microbiology laboratory at the Department of Biology, College of Science, University of Baghdad, Iraq. These isolates are multidrug-resistant and were obtained from various hospital sewage stations in Baghdad city. P. aeruginosa and S. aureus isolates were co-cultured as singleand dual-species biofilms in full-strength brain heart infusion broth (BHIB) and 1000-fold diluted BHIB. In order to evaluate the level of expression of the algD gene in P. aeruginosa that had been treated to starvation, the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was utilized. The results demonstrated that starvation stress significantly (P< 0.05) up regulated the expression of algD in single-species biofilm (3.117 to 4.532-fold). However, starvation stress down regulated the algD expression in dual-species biofilm (0.001 and 0.901-fold). In conclusion, malnutrition up regulated algD expression in single-species P. aeruginosa biofilms but down regulated it in dual-biofilms. This work helps create biofilm-related disease treatments.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Singh MP, Singh P, Li HB, Song QQ, Singh RK. Microbial biofilms: development, structure, and their social assemblage for beneficial applications. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms.2020; 1:125-138.
Waturangi D, Yogiara Y, Magdalena S. Understanding The Mechanism of Biofilm Formation In Major Gram-Negative and Gram-Positive Pathogens With Special Emphasis On Quorum Sensing: 1–39.
Salgar-Chaparro SJ, Lepkova K, Pojtanabuntoeng T, Darwin A, Machuca LL. Nutrient level determines biofilm characteristics and subsequent impact on microbial corrosion and biocide effectiveness. Appl Environ Microbiol. 2020; 86 (7):1–23.
Ansari FA, Jafri H, Ahmad I, Abulreesh HH. Factors affecting biofilm formation in in vitro and in the rhizosphere. Biofilms in plant and soil health. 2017; 14:275-290.
Shi H, Westfall CS, Kao J, Odermatt PD, Anderson SE, Cesar S, Sievert M, Moore J, Gonzalez CG, Zhang L,Elias JE.Starvation induces shrinkage of the bacterial cytoplasm. Proc Nat Acad Sci. 2021; 118(24): p.e2104686118.
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Curr Signal Transduct Ther. 2022;7(1):1-27.
Petrova OE, Sauer K. A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS pathogens. 2009; 5(11):e1000668.
Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS pathogens. 2009;5(3):e1000354.
Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002; 56(1):187-209.
Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes‐ Jørgensen A, Molin S, Tolker‐Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol. 2003; 48(6):1511-1524.
Pamp SJ, Tolker-Nielsen T. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol. 2007; 189(6):2531-2539.
Al-Sheikhly MA, Musleh LN, Al-Mathkhury HJ. Gene Expression of pelA and pslA in Pseudomonas aeruginosa under Gentamicin Stress. Iraqi J Sci. 2020:295-305.
Kamali E, Jamali A, Ardebili A, Ezadi F, Mohebbi A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Res Notes. 2020; 13(1):1-6.
Magalhães AP, Jorge P, Pereira MO. Pseudomonas aeruginosa and Staphylococcus aureus communication in biofilm infections: insights through network and database construction. Crit Rev Microbiol. 2019; 45(5-6):712-728.
Røder HL, Sørensen SJ, Burmølle M. Studying bacterial multispecies biofilms: where to start?. Trends Microbiol. 2016; 24(6):503-513.
Nguyen AT, Oglesby-Sherrouse AG. Interactions between Pseudomonas aeruginosa and Staphylococcus aureus during co-cultivations and polymicrobial infections. Appl Microbiol Biotechnol. 2016; 100(14):6141-6148.
Chew SC, Yam JK, Matysik A, Seng ZJ, Klebensberger J, Givskov M, Doyle P, Rice SA, Yang L, Kjelleberg S. Matrix polysaccharides and SiaD diguanylate cyclase alter community structure and competitiveness of Pseudomonas aeruginosa during dual-species biofilm development with
Staphylococcus aureus. MBio. 2018; 9(6):e00585-18.
Thet NT, Wallace L, Wibaux A, Boote N, Jenkins AT. Development of a mixed‐species biofilm model and its virulence implications in device related infections. J Biomed Mater Res. 2019; 107(1):129-137.
Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev.2002; 15:194–222.
Beaudoin T, Yau YC, Stapleton PJ, Gong Y, Wang PW, Guttman DS, Waters V. Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. NPJ biofilms and microbiomes. 2017; 3(1):1-9.
Serra R, Grande R, Butrico L, Rossi A, Settimio UF, Caroleo B, Amato B, Gallelli L, De Franciscis S. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther. 2015; 13(5):605-613.
Alves PM, Al-Badi E, Withycombe C, Jones PM, Purdy KJ, Maddocks SE. Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonization and pathogenicity in a mixed biofilm. Pathog Dis. 2018; 76(1):fty003.
Wijesinghe G, Dilhari A, Gayani B, Kottegoda N, Samaranayake L, Weerasekera M. Influence of laboratory culture media on in vitro growth, adhesion, and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus. Medical Principles and Practice. 2019; 28(1):28-35.
Tan Q, Ai Q, Xu Q, Li F, Yu J. Polymorphonuclear leukocytes or hydrogen peroxide enhance biofilm development of mucoid Pseudomonas aeruginosa. Mediators Inflamm. 2018; 2018(1):1-14
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001; 25(4):402-408.
Fakhry SS, Hammed ZN, Bakir WA-E, ALRubaii BAL. Identification of methicillin-resistant strains of Staphylococcus aureus isolated from humans and food sources by use mecA 1 and mecA 2 genes in Pulsed-field gel electrophoresis technique. Bionatura. 2022;7(2):44. doi: 10.21931/RB/2022.07.02.44.
Ali M, Al-Rubaii B. Study of the Effects of Audible Sounds and Magnetic Fields on Staphylococcus aureus Methicillin Resistance and mecA Gene Expression. Trop J Nat Prod Res. 2021;5(5):825-830.
Hashim ST, Fakhry SS, Rasoul LM, Saleh TH, Alrubaii BA. Genotyping toxins of Clostridium perfringens strains of rabbit and other animal origins. Trop J Nat Prod Res. 2021;5(4):613-616.
abdulkaliq Awadh H, Hammed ZN, Hamzah SS, Saleh TH, AL-Rubaii BA. Molecular identification of intracellular survival related Brucella melitensis virulence factors. Biomedicine. 2022; 42(4):761-765.
Abdul-Gani MN, Laftaah BA. Purification and characterization of chondroitinase ABC from Proteus vulgaris, an Iraqi clinically isolate. Curr Sci. 2017; 2134- 2140.
kadhim AL-Imam MJ, AL-Rubaii BA. The influence of some amino acids, vitamins and anti-inflammatory drugs on activity of chondroitinase produced by Proteus vulgaris caused urinary tract infection. Iraqi J Sci. 2016; 57 (4A):2412-2421.
Abdulla L, Ismael MK, Salih TA, Malik SN, Al-Rubaii BA. Genotyping and evaluation of interleukin-10 and soluble HLA-G in abortion due to toxoplasmosis and HSV-2 infections. Ann Parasitol., 68(2):385–390.
Jiad AL, Ismael MK, Muhsin SS, Al-Rubaii BA. ND2 Gene Sequencing of Sub fertile Patients Recovered from COVID- 19 in Association with Toxoplasmosis. Bionatura. 2022; 7(3):1-4.
Rasoul LM, Nsaif MM, Al-Tameemi MT, Al-Rubaii BA. Estimation of primer efficiency in multiplex PCR for detecting SARS-Cov-2 variants. Bionatura, 2022; 7(3):48.
Xu Z, Xie J, Soteyome T, Peters BM, Shirtliff ME, Liu J, Harro JM. Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Curr Opin Food Sci. 2019; 26:57–64.
Obaid W, Abdulwahhab A. Impacts of starvation stress on biofilm formation and expression of virulence genes in mono-and mixed-species cultures of Pseudomonas aeruginosa and Staphylococcus aureus. Biochem Cell Arch. 2021; 21:685-693.
Limoli DH, Whitfield GB, Kitao T, Ivey ML, Davis Jr MR, Grahl N, Hogan DA, Rahme LG, Howell PL, O’Toole GA, Goldberg JB. Pseudomonas aeruginosa alginate overproduction promotes coexistence with Staphylococcus aureus in a model of cystic fibrosis respiratory infection. MBio. 2017; 8(2):e00186-17.
Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci. 2013; 110(3):1059-1064.
Armbruster CR, Wolter DJ, Mishra M, Hayden HS, Radey MC, Merrihew G, MacCoss MJ, Burns J, Wozniak DJ, Parsek MR, Hoffman LR. Staphylococcus aureus protein A mediates interspecies interactions at the cell surface of Pseudomonas aeruginosa. MBio. 2016;7(3):e00538-16.