Antidiabetic Potentials of Ethanol Extract of Timonius flavescens (Jacq.) Baker Leaf

http://www.doi.org/10.26538/tjnpr/v7i1.5

Authors

  • Herbert Sipahutar Department of Biology, Faculty of Mathematics and Natural Sciences, Medan State University, Jl. Willem Iskandar, Pasar V, Medan, North Sumatera, Indonesia
  • Adriana Y.D.L. Gaol Department of Biology, Faculty of Mathematics and Natural Sciences, Medan State University, Jl. Willem Iskandar, Pasar V, Medan, North Sumatera, Indonesia
  • Eko Prasetya Department of Biology, Faculty of Mathematics and Natural Sciences, Medan State University, Jl. Willem Iskandar, Pasar V, Medan, North Sumatera, Indonesia

Keywords:

ethanol extract, GC-MS analysis, antidiabetic activity, Timonius flavescens

Abstract

Diabetes Mellitus (DM) is a chronic disease caused by heredity or deficiency in insulin secretion. This disease has occupied the second position as an epidemic in Indonesia. The World Health Organization (WHO) states that nearly 70% of diabetic patients use plants as the main source of antidiabetic agents. One of the plants used by the community for a long time to lower blood sugar is Timonius flavescens (family Rubiaceae). This study aims to determine the content of antidiabetic active compounds in the ethanol extract of T. flavescens leaves by using mass
spectrometry gas chromatography (GC-MS). The results of GC-MS showed that there were more than 40 compounds, then 10 of them had the highest value detected as having antidiabetic agent properties. These compounds include (3β)- stigmast-5-en-3-ol, 3β.-(acetyloxy)-15.-hydroxy- 5..-cholesta-8(14),9(11)-dien-7-one, alpha-tocopherol, hexade-canoic acid, nonanoic acid, phytol, 2,3-dihydrobenzofuran, heptanoic acid, neophytadiene, and campesterol which have been shown to have antidiabetic properties. The results of this study are expected to provide critical
information for researchers and the public regarding the use of T. flavescens leaves as medicine.

 

References

Javadi N, Abas F, Hamid AA, Simoh S, Shaari K, Ismail IS, Mediani A, Khatib A. GC-MS-Based Metabolite Profiling of Cosmos caudatus Leaves Possessing Alpha-Glucosidase Inhibitory Activity. J Food Sci. 2014; 79(6):C1130-C1136.

Matsui T, Tanaka T, Tamura S, Toshima A, Tamaya K, Miyata Y, Tanaka K, Matsumoto K. α-Glucosidase Inhibitory Profile of Catechins and Theaflavins. J Agric Food Chem. 2007; 55(1):99- 105.

Achi NK, Ohaeri OC. GC-MS determination of bioactive constituents of the methanolic fractions of Cnidoscolus aconitifolius. J Pharm Res Int. 2015; 5(3):163-72.

Fard MH, Naseh G, Lotfi N, Hosseini SM, Hosseini M. Effects of aqueous extract of turnip leaf (Brassica rapa) in alloxaninduced diabetic rats. Avicenna phytomedicine. 2015; 5(2):148- 156.

Wahjuni S, Laksmiwati AAIAM, Bogoriani IW. Administration of ethanol extract of mustard greens (Brassica rapa L.) leaves increased Superoxide Dismutase levels in Hyperglycemic rat. J Phys Conf Ser. 2019; 1341(3):032025.

Bailey CJ, Day C. Traditional Plant Medicines as Treatments for Diabetes. Diabetes Care. 1989; 12(8):553-564.

Alarcon-Aguilara F, Roman-Ramos R, Perez-Gutierrez S, Aguilar-Contreras A, Contreras-Weber C, Flores-Saenz J. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J Ethnopharmacol. 1998; 61(2):101-110.

Lbn Gaol AYD, Ilyas S, Hutahaean S, Sipahutar H. Antidiabetic Activity and Immunostimulant Potential of Bosibosi (Timonius flavescens (Jacq) Baker) Leaves Ethanol Extract in AlloxanInduced Diabetic Rats. J Phys Conf Ser. 2021; 1819(1):012071.

Darwin SP. New species of the Timonius flavescens alliance (Rubiaceae: Guettardeae) in Papuasia. Syst Bot. 1997; 22(1):85- 98.

Davis AP, Govaerts R, Bridson DM, Ruhsam M, Moat J, Brummitt NA. A Global Assessment of Distribution, Diversity, Endemism, and Taxonomic Effort in the Rubiaceae 1. Ann Missouri Bot Gard. 2009; 96(1):68-78.

Abu Bakar FI, Abu Bakar MF, Abdullah N, Endrini S, Rahmat A. A Review of Malaysian Medicinal Plants with Potential AntiInflammatory Activity. Adv Pharmacol Sci. 2018; 2018:1-13.

Chung LY, Yap KF, Mustafa MR, Goh SH, Imiyabir Z. Muscarinic Receptor Activity of Some Malaysian Plant Species. Pharm Biol. 2005; 43(8):672-682.

Chung LY, Soo WK, Chan KY, Mustafa MR, Goh SH, Imiyabir Z. Lipoxygenase inhibiting activity of some Malaysian plants. Pharm Biol. 2009; 47(12):1142-1148.

Erdelmeier C, Hauer H, Sticher O, Rali T. 10- Deoxysecogalioside: A New Iridoid Glycoside from Timonius timon. Planta Med. 1994; 60(05):484-485.

Johns S, Lamberton J. The identification of a new alkaloid from Timonius kaniensis (Rubiaceae) as dihydrocupreine. Aust J Chem. 1970; 23(1):211-212.

Khan IA, Sticher O, Rali T. New triterpenes from the leaves of Timonius timon. J Nat Prod. 1993; 56(12):2163-2165.

Subeki. Potency of the Indonesian Medicinal Plants as Antimalarial Drugs. J Teknol dan Ind Has Pertan. 2008; 13(1):25- 30.

Setzer MC, Setzer WN, Jackes BR, Gentry GA, Moriarity DM. The medicinal value of tropical rainforest plants from Paluma, North Queensland, Australia. Pharm Biol. 2001; 39(1):67-78.

Suharjito D, Darusman LK, Darusman D, Suwarno E. Comparing Medical Plants use for Traditional and Modern Herbal Medicine in Long Nah Village of East Kalimantan. Bionatura. 2014; 16(2):95-102.

Laely N, Sipahutar H. Potensi Aktivitas Biologis Senyawa Fenolik Ekstrak Daun Bosibosi (Timonius flavescens (Jacq.) Baker). J Biosains. 2017; 3(1):43-48.

Gultom ES, Hartanti T, Maritsa H, Prasetya E. Antibacterial activity test on ethanol extract fraction of Kirinyuh (Chromolaena odorata L.) leaves for multi-drug resistant organisms bacteria. Biog J Ilm Biol. 2021; 9(1):26-34.

Okigbo R, Mbajaka C, Njoku C. Antimicrobial potential of (Uda) Xylopia aethopica and Ocimum gratissimum on some pathogens of man. Int J Mol Med Adv Sci. 2005; 1(4):392-397.

Richardson PM, Harborne JB. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. Second Edition. Brittonia. 1990; 42(2):115-115.

Zayed MZ, Samling B. Phytochemical constituents of the leaves of leucaena leucocephala from malaysia. Int J Pharm Pharm Sci. 2016; 8(12):174-179.

Alagammal M, Tresina PS, Mohan VR. GC-MS determination of bioactive components of Polygala javana DC. Int J Curr Pharm Res. 2012; 4(2):42-44.

Trabalon M, Niogret J, Legrand-Frossi C. Effect of 20- hydroxyecdysone on cannibalism, sexual behavior, and contact sex pheromone in the solitary female spider, Tegenaria atrica. Gen Comp Endocrinol. 2005; 144(1):60-66.

Vivancos M, Moreno JJ. β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic Biol Med. 2005; 39(1):91-97.

Gupta R, Sharma AK, Dobhal MP, Sharma MC, Gupta RS. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J Diabetes. 2011; 3(1):29-37.

Sujatha S, Anand S, Sangeetha KN, Shilpa K, Lakshmi J, Balakrishnan A, Lakshmi BS. Biological evaluation of (3β)- stigmast-5-en-3-ol as potent anti-diabetic agent in regulating glucose transport using in vitro model. Int J Diabetes Mellit. 2010; 2(2):101-109.

Muñoz-Gómez RJ, Rivero-Cruz I, Ovalle-Magallanes B, Linares E, Bye R, Tovar AR, Noriega LG, Tovar-Palacio C, Mata R. Antidiabetic Sterols from Peniocereus greggii Roots. ACS Omega. 2022; 7(15):13144-13154.

Bharti SK, Kumar A, Sharma NK, Prakash O, Jaiswal SK, Krishnan S, Gupta AK, Kumar A. Tocopherol from seeds of Cucurbita pepo against diabetes: Validation by invivo experiments supported by computational docking. J Formos Med Assoc. 2013; 112(11):676-690.

Metwally NS, Mohamed AM, El Sharabasy FS. Chemical constituents of the Egyptian plant Anabasis articulata (Forssk) moq and its antidiabetic effects on rats with streptozotocininduced diabetic hepatopathy. J Appl Pharm Sci. 2012; 2(4):54-65.

Unnikrishnan PS, Suthindhiran K, Jayasri MA. Antidiabetic potential of marine algae by inhibiting key metabolic enzymes. Front Life Sci. 2015; 8(2):148-159.

Han YE, Kang CW, Oh JH, Park SH, Ku CR, Cho YH, Lee MK, Lee EJ. Olfactory Receptor OR51E1 Mediates GLP-1 Secretion in Human and Rodent Enteroendocrine L Cells. J Endocr Soc.2018; 2(11):1251-1258.

Elmazar MM, El-Abhar HS, Schaalan MF, Farag NA. Elmazar, M. M., El-Abhar, H. S., Schaalan, M. F., & Farag, N. A. Phytol/Phytanic Acid and Insulin Resistance: Potential Role of Phytanic Acid Proven by Docking Simulation and Modulation of Biochemical Alterations. PLoS ONE. 2013; 8(1):1-10.

Villarroya F, Iglesias R, Giralt M. Retinoids and Retinoid Receptors in the Control of Energy Balance: Novel Pharmacological Strategies in Obesity and Diabetes. Curr Med Chem. 2005; 11(6):795-805.

Rayanil K, Sutassanawichanna W, Suntornwat O, Tuntiwachwuttikul P. A new dihydrobenzofuran lignan and potential α -glucosidase inhibitory activity of isolated compounds from Mitrephora teysmannii. Nat Prod Res. 2016; 30(23):2675- 2681.

Ahmad S, Ullah F, Ayaz M, Ahmad A, Sadiq A, Mohani SN-UH. Nutritional and medicinal aspects of Rumex hastatus D. Don along with in vitro anti-diabetic activity. Int J Food Prop. 2019; 22(1):1733-1748.

Won-jung K, Ji-sook K, Wook J, Song J-Y, Moon-seop L, Namdoo K, Gwi-hyeon, S. 2,3-dihydrobenzofuran derivatives as an sglt inhibitor and pharmaceutical composition comprising same. South Korea; KR20150130177A, 2014:1-27.

El Barky AR, Hussein SA, Alm-Eldeen AA, Hafez YA, Mohamed TM. Anti-diabetic activity of Holothuria thomasi saponin. Biomed Pharmacother. 2016; 84:1472-1487.

Rajalakshmi K, Christian GJ, Shanmuga PP, Jeeva GR. Validation of Anti-diabetic Potential of Avirai kudineer a Siddha herbal formulation-A Review. IOSR J Dent Med Sci. 2015; 14(7):2279-2861.

Fazelipour S, Hadipour Jahromy M, Tootian Z, Goodarzi N. Antidiabetic effects of the ethanolic extract of Allium saralicum R.M. Fritsch on streptozotocin‐induced diabetes in a mice model. Food Sci Nutr. 2021; 9(9):4815-26.

Sadiq A, Rashid U, Ahmad S, Zahoor M, AlAjmi A, Ullah R, Noman OM, Ullah F, Ayaz M, Khan I, Islam Z, Ali W. Treating Hyperglycemia from Eryngium caeruleum M. Bieb: In-vitro α- Glucosidase, Antioxidant, in-vivo Antidiabetic and Molecular Docking-Based Approaches. Front Chem. 2020; 8(558641):1-19.

de Mello VDF, Lindström J, Eriksson JG, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Pihlajamäki J, Tuomilehto J, Uusitupa M. Markers of cholesterol metabolism as biomarkers in predicting diabetes in the Finnish Diabetes Prevention Study. Nutr Metab Cardiovasc Dis. 2015; 25(7):635-642.

Fleisher LA. Phytosterols. In: Essence of Anesthesia Practice. Elsevier; 2011:682.

Wang HX, Ng TB. Natural products with hypoglycemic, hypotensive, hypocholesterolemic, antiatherosclerotic and antithrombotic activities. Life Sci. 1999; 65(25):2663-2677.

Payum T. GC-MS analysis of Mussaenda roxburghii Hk.f.: A folk food plant used among tribes of arunachal pradesh, India. Pharmacogn J. 2016; 8(4):395-398.

Crowe-McAuliffe C, Graf M, Huter P, Takada H, Abdelshahid M, Nováček J, Murina V, Atkinson GC, Hauryliuk, V, Wilson, DN. Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR. Proc Natl Acad Sci U S A. 2018; 115(36):8978-8983.

Hodgson JM, Croft KD, Woodman RJ, Puddey IB, Bondonno CP, Wu JHY, Beilin LJ, Lukoshkova EV, Head GA, Ward NC. Effects of vitamin E, vitamin C and polyphenols on the rate of blood pressure variation: results of two randomised controlled trials. Br J Nutr. 2014; 112(9):1551-61.

Ward NC, Wu JH, Clarke MW, Puddey IB, Burke V, Croft KD, Hodgson JM. The effect of vitamin E on blood pressure in individuals with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. J Hypertens. 2007; 25(1):227-34.

Mohammad A, Falahi E, Barakatun-Nisak MY, Hanipah ZN, Redzwan SM, Yusof LM, Gheitasvand M, Rezaie F. Systematic review and meta-analyses of vitamin E (alpha-tocopherol) supplementation and blood lipid parameters in patients with diabetes mellitus. Diabetes Metab Syndr Clin Res Rev. 2021;

(4):102158.

Ble-Castillo JL, Carmona-Díaz E, Méndez JD, Larios-Medina FJ, Medina-Santillán R, Cleva-Villanueva G, Díaz-Zagoyabe, JC. Effect of α-tocopherol on the metabolic control and oxidative stress in female type 2 diabetics. Biomed Pharmacother. 2005; 59(6):290-195.

Wang F, Li H, Zhao H, Zhang Y, Qiu P, Li J, Wang S. Antidiabetic Activity and Chemical Composition of Sanbai Melon Seed Oil. Evidence-based Complement Altern Med. 2018; 2018: 5434156.

Heim M, Johnson J, Boess F, Bendik I, Weber P, Hunziker W, Flühmann B. Phytanic acid, a natural peroxisome proliferatoractivated receptor (PPAR) agonist, regulates glucose metabolism in rat primary hepatocytes. FASEB J. 2002; 16(7):718-720.

Nauck MA, Meier JJ. Incretin hormones: Their role in health and disease. Diabetes, Obes Metab. 2018; 20(8):5-21.

Conforti F, Loizzo MR, Statti GA, Menichini F. Comparative Radical Scavenging and Antidiabetic Activities of Methanolic Extract and Fractions from Achillea ligustica ALL. Biol Pharm Bull. 2005; 28(9):1791-1794.

Simonen P, Gylling H, Miettinen TA. The validity of serum squalene and non-cholesterol sterols as surrogate markers of cholesterol synthesis and absorption in type 2 diabetes. Atherosclerosis. 2008;197(2):883-888.

Ooi EMM, Ng TWK, Chan DC, Watts GF. Plasma markers of cholesterol homeostasis in metabolic syndrome subjects with or without type-2 diabetes. Diabetes Res Clin Pract. 2009; 85(3):310-316.

Gylling H, Plat J, Turley S, Ginsberg HN, Ellegård L, Jessup W, Jones PJ, Lütjohann D, Maerz W, Masana L, Silbernagel G, Staels B, Borén J, Catapano AL, Backer GD, Deadfield J, Descamps OS, Kovanen PT, Riccardi G, Tokgözoglu L, Chapman MJ. Plant sterols and plant stanols in the management

of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis. 2014; 232(2):346-360.

Pihlajamäki J, Gylling H, Miettinen TA, Laakso M. Insulin resistance is associated with increased cholesterol synthesis and decreased cholesterol absorption in normoglycemic men. J Lipid Res. 2004; 45(3):507-512.

Published

2023-02-01

How to Cite

Sipahutar, H., Gaol, A. Y., & Prasetya, E. (2023). Antidiabetic Potentials of Ethanol Extract of Timonius flavescens (Jacq.) Baker Leaf: http://www.doi.org/10.26538/tjnpr/v7i1.5. Tropical Journal of Natural Product Research (TJNPR), 7(1), 2115–2121. Retrieved from https://tjnpr.org/index.php/home/article/view/1525