Liquid Chromatography-Electrospray Ionization Mass Spectrometry Analysis of QuilA: an Aqueous Extract from the Bark of Quillaja saponaria Molina

http://www.doi.org/10.26538/tjnpr/v7i1.30

Authors

  • Moshegwana O. Tebogo School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Private Bag 0022 Botswana
  • Thatayaone Monkgogi School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Private Bag 0022 Botswana
  • Florah Moshapa School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Private Bag 0022 Botswana
  • Deepthi Rapaka A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India-30003
  • Veera R. Bitra School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Private Bag 0022 Botswana
  • Paul C. Adiukwu School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Private Bag 0022 Botswana

Abstract

Quil-A, a commercial product of the aqueous extract of Quillaja saponaria Molina bark, indigenous to Chile has been widely reported for its immuno-modulatory and adjuvant properties. The saponin constituent of the plant extract, which is responsible for these properties, is commonly separated using liquid chromatography techniques. However, the application of this technique is impaired by the non-saponin constituents of the aqueous matrix, leading to the shortening of the column life. Therefore, the study was to develop a reverse-phase liquid chromatography technique to improve the resolution of the aqueous matrix. Applying the reverse phase liquid chromatography using optimized gradient solvent mixtures of water, acetonitrile, and 10 mM ammonium acetate, components from the sample were eluted on a C5 reverse phase column. Liquid chromatography peaks at 214 nm, and electrospray ionization mass spectrometer signals were identified as per the NIST-MS data library. The finding indicates the presence of ions of molecules previously reported. Also, ions of high molecular weight saponin-like molecules, which are yet to be reported, were eluted at early retention times of the chromatography elution. The study suggests the possible presence of molecules, which could be novel and contribute to the ultimate benefits of Quil-A.

 

Author Biography

Moshegwana O. Tebogo, School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Private Bag 0022 Botswana

School of Pharmacy, Memorial University of Newfoundland, 30 Elizabeth Ave, St. John's, NL A1C 5S7, Canada.

References

Baz Morelli A, Becher D, Koernig S, Silva A, Drane D, Maraskovsky E. ISCOMATRIX: a novel adjuvant for use in prophylactic and therapeutic vaccines against infectious diseases. J Med Microbiol. 2012; 61(7):935-943.

Watson L, Dallwitz MJ. The families of flowering plants: descriptions, illustrations, identification, and information retrieval. [Online]. 1992 onwards [cited 2022 Sept 26]. Available from: https://www.deltaintkey.com/angio/www/quillaja.htm.

Luebert F. Taxonomy and distribution of the genus Quillajamolina (Quillajaceae). Feddes Repertorium. 2013; 124:157-162.

Cañon-Jones H, Cortes H, Castillo-Ruiz M, Schlotterbeck T, San Martín R. Quillaja saponaria (Molina) extracts inhibits in vitro Piscirickettsia salmonis infections. Animals. 2020;10 (12):2286. Doi.org/10.3390/ani10122286.

Güçlü-Üstündag Ö, Mazza G. Saponins: properties, applications and processing. Crit. Rev. Food Sci. Nutr. 2007; 47:231-258.

Reed S, Orr M, Fox C. Key roles of adjuvants in modern vaccines. Nat Med. 2013; 19:1597-1608.

Rajput ZI, Hu SH, Xiao CW, Arijo AG. Adjuvant effects of saponins on animal immune responses. J. Zhejiang Univ. Sci.

B. 2007; 8:153-161.8. Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromolecules. 2008; 9:1837-

Chandrasekar SS, Kingstad-Bakke B, Wu CW, Suresh M, Talaat AM. A novel mucosal adjuvant system for immunization against avian coronavirus causing infectious bronchitis. J Virol. 2020; 94(19):e01016-20.

Chandrasekar SS, Phanse Y, Hildebrand RE, Hanafy M, Wu CW, Hansen CH, Osorio JE, Suresh M, Talaat AM. Localized and systemic immune responses against SARSCoV-2 following mucosal immunization. Vaccines. 2021; 9:132. Doi.org/10.3390/vaccines9020132.

He Q, Mao Q, Zhang J, Bian L, Gao F, Wang J, Xu M, Liang Z. COVID-19 vaccines: current understanding on immunogenicity, safety, and further considerations. Front. Immunol. 2021; 12:669339.

Dalsgaard K. Thin-layer chromatographic fingerprinting of commercially available saponins. Dansk T. Farm. 1970; 44:327-331.

Dalsgaard K.: Saponin adjuvants. The presence of a nondialysab1e fraction of Quillaja saponiaria Molina with adjuvant activity in foot and mouth disease vaccines. Bull. Off. int. Epizoot. 1972; 77:1289-1295.

Highuchi R, Tokimitsu Y, Fujioka T, Komori T, Kawsaki T, Oakenful DG. Structure of desacylsaponin obtained from the bark of Quillaja saponaria. Phytochemistry 1987; 26(1): 229-235.

Higuchi R, Tokimitsu Y, Komori T. An acylated triterpenoid saponin from Quillaja saponaria. Phytochemistry. 1988; 27:1165-1168.

Steinbeck C, Schneider C, Rotscheidt K, Breitmaier E. A 4-Methyl -7- hydroxyphthalide glycoside and other Constituents from Quillaja saponaria Molina. Phytochemistry 1995; 40:1313-15.

van Setten DC, van de Werken G, Zomer G, Kersten GF. Glycosyl compositions and structural characteristics of the potential immuno-adjuvant active saponins in the Quillaja saponaria Molina extract Quil A. Rapid Commun Mass Spectrom. 1995; 9(8):660-6.

Kensil CR, Patel U, Lennick M, Marciani D. Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J Immunol. 1991; 146(2): 431-7.

Fleck DJ, Betti AH, da Silva FP, Troian EA, Olivaro C, Ferreira F, Verza SG. Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular Chemical Characteristics and Biological Activities. Molecules. 2019; 24(1):171. Doi: 10.3390/molecules24010171.

Okeke VO, Okoye NN, Ngwoke KG, Okoye FBC. Antimicrobial Screening and HPLC-DAD-MS Characterization of the Flavonoid–Rich Fractions of the Methanol Leaf-Extract of Lawsonia inermisLinn. Trop. J. Nat. Prod. Res., 2021; 5(8):1500-1505.

Reichert CL, Salminen H, Weiss J. Quillaja saponin characteristics and functional properties. Annu Rev Food Sci Technol. 2019; 10 (1):43-73.

Wallace F, Bennadji Z, Ferreira F, Olivaro C. Analysis of an immunoadjuvant saponin fraction from Quillaja brasiliensisleaves by electrospray ionization ion trap multiple-stage mass spectrometry. Phytochem. Lett. 2017; 20:228-233.

Kensil CR, Soltysik S, Wheeler DA, Wu JY. Structure/Function Studies on QS-21, A Unique Immunological Adjuvant from Quillaja saponaria. In: Waller GR, Yamasaki K (eds) Saponins Used in Traditional and Modern Medicine. Advances in Experimental Medicine and Biology, Vol 404. Boston: Springer; 1996.

EFSA FAF Panel (EFSA Panel on Food Additives and Flavourings), Younes M, Aquilina G, Castle L, Engel K-H, Fowler P, Frutos Fernandez MJ, Fürst P, Gürtler R, GundertRemy U, Husøy T, Mennes W, Oskarsson A, Shah R, Waalkens-Berendsen I, Wölfle D, Boon P, Lambré C, Tobback P, Wright M, Rincon AM, Smeraldi C, Tard A,Moldeus P. Scientific opinion on the re-evaluation of Quillaia extract (E 999) as a food additive and safety of the proposed extension of use. EFSA J. 2019; 17(3):5622-5650.Doi.org/10.2903/j.efsa.2019.5622.

Grandón AS, Espinosa MB, Ríos DL, Sánchez OM, Sáez CK , Hernández SV, Becerra JA. Variation of Saponin contents and physiological status in Quillaja saponaria under different environmental conditions. Nat Prod Commun. 2013; 8(12):1697-1700.

Lecas L, Nuccio S, de Vaumas R, Faure K. Off-line twodimensional liquid chromatography separation for the quality control of saponins samples from Quillaja saponaria. J Sep Sci. 2021; 44:3070–3079.

Nord LI, Kenne L. Novel acetylated triterpenoid saponins in a chromatographic fraction from Quillaja saponaria Molina. Carbohydr Res. 2000; 329 (4):817-829.

Sparg SG, Light ME, van Staden J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004; 94, 219–243.

Fleck JD, Schwambach J. Almeida ME, Yendo ACA, de Costa F, Gosmann G, Fett-Neto AG. Immunoadjuvant saponin production in seedlings and micropropagated plants of Quillaja brasiliensis. In Vitro Cell. Dev. Biol,-Plant. 2009; 45:715-720.

Gonzalez PJ, Sörensen PM. Characterization of saponin foam from Saponaria officinalisfor food applications, Food Hydrocoll.2020; 101:105541.

Góral I, Wojciechowski K. Surface activity and foaming properties of saponin-rich plants extracts. Adv Colloid Interface Sci. 2020; 279:102145. Doi: 10.1016/j.cis.2020.102145.

Wallace F, Fontana C, Ferreira F, Olivaro C. Structure elucidation of triterpenoid saponins found in an immunoadjuvant preparation of Quillaja brasiliensis using Mass Spectrometry and 1H and 13C NMR Spectroscopy. Molecules 2022; 27(8):2402. Doi.org/10.3390/molecules27082402.

Ahmad VU, Basha A. Spectroscopic data of saponins: the triterpenoid glycosides (Vol. 1). Boca Raton, FL: CRC Press; 2000.

Cleland JL, Kensil CR, Lim A, Jacobsen NE, Basa L., Spellman M, Wheeler DA, Wu JY, Powell MF. The isomerization and formulation stability of the vaccine adjuvant QS-21. J. Pharm. Sci. 1996; 85(1):22-23.

He Q, Mao Q, Zhang J, Bian L, Gao F, Wang J, Xu M and Liang Z. COVID-19 Vaccines: Current understanding on immunogenicity, safety and further considerations. Front. Immunol. 2021; 12:669339.

Coccia M, Collignon C, Hervé C, Chalon A, Welsby I, Detienne S, van Helden MJ, Dutta S, Genito CJ, Waters NC, van Deun K, Smilde AK, van den Berg R, David Franco D, Bourguignon P, Morel S, Garçon N, Lambrecht BN, Goriely S, van der Most R, Didierlaurent AM. Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNγ response promoting vaccine immunogenicity. NPJ Vaccines. 2017; 2:25.

Downloads

Published

2023-02-01

How to Cite

Tebogo, M. O., Monkgogi, T., Moshapa, F., Rapaka, D., Bitra, V. R., & Adiukwu, P. C. (2023). Liquid Chromatography-Electrospray Ionization Mass Spectrometry Analysis of QuilA: an Aqueous Extract from the Bark of Quillaja saponaria Molina: http://www.doi.org/10.26538/tjnpr/v7i1.30. Tropical Journal of Natural Product Research (TJNPR), 7(1), 2285–2291. Retrieved from https://tjnpr.org/index.php/home/article/view/1519