Phenolics of Abelmoschus esculentus Pods: HPLC Identification and In Silico Studies to Identify Potential Anti-inflammatory Agents doi.org/10.26538/tjnpr/v6i8.25
Main Article Content
Abstract
Numerous medical disorders are impacted by inflammation. In this study, we aim to evaluate the anti-inflammatory (in silico) activities of selected phenolic compounds identified by HPLC analysis of methanol extracts of Abelmoschus esculentus pods. Cyclooxygenases are recognised to be the primary mediators of prostaglandin production, which are inflammatory indicators and are hence the focus of anti-inflammatory therapy. Numerous crucial physiological processes, including inflammation, immunological responses, cellular development, apoptosis, and the expression of certain viral growth factors, are regulated by nuclear factor kappa B (NF-κB) transcription factors. Thus, it seems possible to treat inflammatory and cancerous disorders by blocking NF-κB induction. In this study, (NF-κB) and (COX-2) receptors are targets for ligands; caffeic acid, vanillic acid and ferulic acid. PyRx was used for the docking using Autodock Vina embedded in MGL Tools 1.5.6. A Drug-likeness test was performed using ADME tools while ProTox II was used to predict toxicity and LD50 of the ligands. The bioactivities were predicted using the prediction of activity spectra for substances (PASS). According to molecular docking, the phytocompounds gave good binding energies. All identified compounds conformed to Lipinski's Rule of Five (RO5). This showed that the identified A. esculentus compounds will have lower attrition rates during clinical trials and will have a high chance of making it to the market. The current findings suggest that the identified phytocompounds could be developed as a novel anti-inflammatory medication.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Edy SW and Sucipto H.Organic Compounds: Contents and Their Role in Improving Seed Germination and Protocorm Development in Orchids. Int J Agro. 2020; 2795108:1-12
Paul PT and Gary SF.NF-κB: a key role in inflammatory diseases. J Clin Invest. 2001; 107(1): 7–11.
Langman MJS.Ulcer complications and NSAIDs. Am J Med. 2017; 84: 15–19.
Samik B, Somnath M, Uday B. Non-steroidal anti- inflammatory drugs (NSAIDs) and organ damage: A current perspective. BiochemPharmacol. 2020; 180:114147.
InformedHealth.org.Eczema: Steroids and other topical medications.2017;Available from: https://www.ncbi.nlm.nih.gov/books/NBK424899/ cited on 23 Feb, 2022.
Farrugia M and Baron B.The role of TNF-α in rheumatoid arthritis: a focus on regulatory Tcells. J ClinTransl Res. 2016; 2: 84–90.
Alessandra D, Massimo L, Ettore N, Eliana BS, Patricia D, Antonello S. Abelmoschus esculentus (L.): Bioactive Components’ Beneficial Properties—Focused on Antidiabetic Role—For Sustainable Health Applications. Mol. 2019; 24(1): 38 – 43.
Lim TK. Edible Medicinal and Non-Medicinal Plants, Springer Science + Business Media B.V. 2012;. 3: 160.
Grieve A. Modern Herbal. Penguin. 1984.Available at https://www.botanical.com/ botanical/mgmh/mgmh.html cited on 25 Feb, 2022
Maramag RP. Diuretic potential of Capsicum frutescens, Corchorus oliturius L., and Abelmoschus esculentus L. Asian J Nat Appl Sci.2013; 2(1):60-69.
Atawodi SE, Atawodi JC, Idakwo GA, Pfundstein B, Haubner R, Wurtele G, Owen RW. Polyphenol composition and antioxidant potential of Hibiscus esculentus L. fruit cultivated in Nigeria. J Med Food. 2009; 12(6):1316-1320.
Khomsug P, Thongjaroenbuangam W, Pakdeenarong N, Suttajit M, Chantiratikul P. Antioxidative Activities and Phenolic Content of Extracts from Okra (Abelmoschus esculentus). Res J Bio. Sci. 2010; 5(4): 310-313.
Adelakun OE, Ade-Omowaye, BIO, Adeyemi IA, Van-De- Venter M.Functional properties and mineral contents of a Nigerian okra seed (Abelmoschus esculentus Moench) flour as influenced by pretreatment. J Food Technnol. 2010; 8(2):39-45.
Adelakun OE, Oyelade OJ, Ade-Omowaye BI, Adeyemi IA, Van-de-Venter M, Koekemoer TC.Influence of pre- treatment on yield chemical and antioxidant properties of a Nigerian okra seed (Abelmoschus esculentus Moench) flour. Food ChemToxicol.2009; 47(3): 657-661.
Ansari NM, Houlihan L, Hussain B, Pieroni A.Antioxidant activity of five vegetables traditionally consumed by south- Asian migrants in Bradford, Yorkshire, UK. Phytother Res. 2005; 19(10):907-911.
Liao H, Liu H, Yuan K.A new flavonol glycoside from the Abelmoschusesculentus. Pharm. Mag. 2005; 8: 12-15.
Tomoda M, Shimizu N, Gonda R. Isolation and characterisation of mucilage 'Okra Mucilage R' from the roots of Abelmoschusesculentus. Chem Pharm Bull. 1985; 33(8):3330-3335.
Fitriah A, Holil K, Syarifah U, Fitriyah UDH.In silicoapproach for Revealing the anti-breast cancer and estrogen receptor alpha inhibitory activity of Artocarpus altilis In AIP Conf Proc.2021;1:1-7.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ.Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46: 3–26.
Ghose AK, Viswanadhan VN, Wendoloski JJ.A knowledge-Based approach in designing combinatorial or medicinal chemistry libraries for drug discovery.Aqualitative and quantitative characterization of known drug databases. J Comb Chem. 1999; 1:55–68.
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW,Kopple KD.Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002; 45:2615–2623.
Egan WJ, Merz KM, Baldwin JJ.Prediction of Drug Absorption Using Multivariate Statistics. J Med Chem. 2000;43:3867-3877.
Muegge I, Heald SL, Brittelli D.Simple selection criteria for drug-like chemical matter. J Med Chem. 2001;44: 1841–1846.
Kwekowe CG, Johnbull EO, Otuokere IE.Isolation and Characterization of Secondary Metabolite from the Stem Bark Extract of Allophylus africanus Beauv (Sapindaceae),J ChemSoc Nig. 2021;46(2):382–392.
Ikpeazu OV, Otuokere IE, Igwe KK. Preliminary Studies on the Secondary Metabolites of Buchholzia coriacea(Wonderful Kola) Seed Ethanol Extract by GC-MS Analysis. Int J Res Eng Appl.2017; 7:17-26.
Otuokere IE, Amaku FJ, Igwe KK, Chinedum GC.Medicinal studies on the phytochemical constituents of Judticiacarneaby GC-MS analysis. Am J Food Sci Health. 2016; 2:71-77.
Otuokere IE, Okorie DO, Igwe KK, Matthew UI.Gas Chromatography-Mass Spectrometry Determination of Bioactive Phytocompounds in Chromolaena OdorataLeaf Extract. Int J Adv. Engr Technol Sci. 2016;2:7-11.
Igwe KK, Madubuike AJ, Ikenga C, Otuokere IE, Amaku FJ.Studies of the medicinal plant Pausinystalia yohimbeethanol leaf extract phytocomponents by GCMS analysis. Int J Sci Res Mgt. 2016;4:4116–4122.
Igwe KK, Nwankwo PO, Otuokere IE, Ijioma SN, Amaku FJ.GC-MS analysis of phytocomponents in the methanolic extract of Moringa oleiferaleave. J Res Pharm Sci.2015; 20: 1- 6.
Igwe KK, Madubuike AJ, Akomas SC, Otuokere IE, Ukwueze CS.Studies of the medicinal plant Euphorbia hirtamethanol leaf extract phytocomponents by GCMS analysis , Int J Sci Technol Res Engr. 2016;1(4): 9-16.
Ahuchaogu AA, Ogbuehi GI, POU, Otuokere IE.Gas Chromatography Mass Spectrometry and Fourier transform Infrared Spectroscopy analysis of methanolic extract of Mimosa pudica L. leaves. J Drugs Pharm Sci. 2020; 4(1): 1- 9.
Ikpeazu OV, Otuokere IE, Igwe KK.Gas chromatography–mass spectrometric analysis of bioactive compounds present in ethanol extract of Combretum hispidum (Laws)(Combretaceae) root. Comm Phy Sci.2020; 5(3): 325-337.
Ikpeazu OV, Otuokere IE, Igwe KK.GC–MS Analysis of Bioactive Compounds Present in Ethanol Extract of Combretum hispidum (Laws)(Combretaceae) leaves. Int J Trend Sci Res Dev. 2020;4(5): 307-313.
Otuokere IE, Amaku FJ, Igwe KK, Bosah CA.Characterization of Landolphia dulcis Ethanol Extract by Gas Chromatography-Mass Spectrometry Analysis. Int J Adv Engr Technol Sci. 2016;2(4): 13-17.
Dallakyan S and Olson AJ. (Small-Molecule Library Screening by Docking with Pyrx. In Chemical Biology; Humana Press: New York, NY, USA. 2015.243–250 p.
O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminf. 2011;3(1):33.
Dallakyan S and Olsonn AJ.Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263: 243-250.
Laskowski RA and Swindells MB.LigPlot+ multiple ligandprotein interaction diagrams for drug discovery. J ChemInf Model. 2011;51(10): 2778-2786.
Antoine D, Olivier M, Vincent Z.SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. SciRep. 2017; 7: 42717.
ProTox-II. (https://tox-new.charite.de/protox_II/, cited on March 2022).
Way2Drug—Main. Available online: http://www.pharmaexpert.ru/PASSonline/index.php (citedon 18 May 2021).
Goel RK, Singh D, Lagunin A, Poroikov V.PASS-assisted exploration of new therapeutic potential of natural products. Med Chem Res. 2011;20:1509 –1514.
Chiufai K, Chenyu L, Chiian K, Manin L, Lirong M, Fong P. Anti-endometrial Cancer Activity of Hedyotis diffusaWilld and its Phytochemicals by Experimental and In SilicoAnalysis. Trop J Nat Prod Res. 2022; 6(5):754-761.
Ikpa CBC. Ikezu UJM, Maduwuba MC. In Silico Docking Analysis of Anti-malaria and Anti-typhoid Potentials of Phytochemical Constituents of Ethanol Extract of Dryopteris dilatata. Trop J Nat Prod Res. 2022; 6(5):772-782.
Olatayo AO, Ayansina ADV, Dahunsi SO. Antibacterial Activity and Molecular Docking Analysis of the Stem Bark Extracts of Persea americana Mill (Lauraceae). Trop J Nat Prod Res. 2022; 6(6):980-990.
Fong P, Ao CN, Tou KI, Huang KM, Cheong CC, Meng LR. Experimental and in silico analysis of cordycepin and its derivatives as endometrial cancer treatment. Oncol Res. 2019; 27(2):237.