Antioxidant and Antidiabetic Activities of Ethanol Extract of Ficus botryocarpa Miq. Fruit doi.org/10.26538/tjnpr/v6i7.13

Main Article Content

Benjamart Cushnie
Autchara Promlaruk
Chayapim Boonchoo
Wanitchakorn Singban
Thanawut Khaodee
Boonyawat Boonradom
Pawitra Pulburt

Abstract

Diabetes mellitus (DM) is a major public health concern worldwide. Poorly controlled diabetes can lead to hyperglycemia and serious complications, including macrovascular and microvascular diseases of the kidneys and eyes, and a variety of clinical neuropathies. There is evidence that serious complications are associated with increased generation of free radicals. Inhibition of alpha-amylase activity can be an effective strategy for controlling carbohydrate digestion and reducing postprandial hyperglycemia. This study aimed to investigate the in vitro antioxidant capacity and alpha-amylase inhibitory activity of Ficus botryocarpa fruit ethanol extract (FBFE). Antioxidant potential was determined using a radical scavenging capacity assay (2, 2-diphenyl-1-picrylhydrazyl; DPPH), 2,2’-azinobis (3-ethylbenzothiazoline-6-sulfonic acid; ABTS), and ferric ion reducing power (FRAP) assays. The alpha-amylase inhibitory effect of the extract was investigated using 3,5 dinitrosalicylic (DNS) method. In the DPPH and ABTS assays, FBFE had IC50 values of 54.51±7.20 μg/mL and 5.28±0.30 μg/mL, respectively. In the FRAP assay, FBFE had FRAP value of 1.97±0.12 mM Fe2+/mg dried extract. In the DNS method, the highest inhibitory effect of the extract against alpha-amylase was 97.65±5.27% at 50 μg/mL, with a  half maximal inhibitory concentration (IC50) value of  6.22±2.31 μg/mL. Therefore, it can be concluded that the ethanol fruit extract of Ficus botryocarpa demonstrated high antioxidant capacity and alpha-amylase inhibitory activity. This finding may justify its traditional use in the treatment of diabetes mellitus.

Article Details

How to Cite
Cushnie, B., Promlaruk, A., Boonchoo, C., Singban, W., Khaodee, T., Boonradom, B., & Pulburt, P. (2022). Antioxidant and Antidiabetic Activities of Ethanol Extract of Ficus botryocarpa Miq. Fruit: doi.org/10.26538/tjnpr/v6i7.13. Tropical Journal of Natural Product Research (TJNPR), 6(7), 1119–1123. Retrieved from https://tjnpr.org/index.php/home/article/view/1436
Section
Articles

References

Lau LH, Lew J, Borschmann K, Thijs V, Ekinci E. Prevalence of diabetes and its effects on stroke outcomes: A meta-analysis and literature review. J Diabetes Investig. 2019; 10(3):780-792.

Balaji R, Duraisamy R, Kumar MPS. Complications of diabetes mellitus: A review. Drug Invent Today. 2019; 12(1):98-103.

Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of diabetes 2017. J Diabetes Res. 2018; Article ID 3086167: 4 pages.

Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J. 2016; 24(5):547-553.

Giacco F and Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010; 107(9):1058-1070.

Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020; Article ID 8609213: 13 pages.

Sales PM, Souza PM, Simeoni LA, Silveira D. Alpha-amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci. 2012; 15(1):141-183.

Ye X-P, Song C-Q, Yuan P, Mao R-G. Alpha-glucosidase and alpha-amylase inhibitory activity of common constituents from traditional Chinese medicine used for diabetes mellitus. Chinese J Nat Med. 2010; 8(5):349-352.

Wau J, Harakuwe A, Timi D, Sakulas H, Gubag-Sipou R, Wangiwan P. Weather Dependent Antibacterial activity of the latex from Ficus botryocarpa. Environ Papua New Guinea. 2009; 2(2):1-3.

Waruruai J, Sipana B, Koch M, Barrows LR, Matainaho TK, Rai PP. An ethnobotanical survey of medicinal plants used in the Siwai and Buin districts of the Autonomous Region of Bougainville. J Ethnopharmacol. 2011; 138(2):564-577.

Wau J, Timi D, Harakuwe A, Bowden B, Motti C, Sakulas H, Gubag-Sipou R. Isolation of three bioactive phenantroindolizidine alkaloids from the fruit latex of Ficus botryocarpa Miq. Nat Prod Chem Res. 2015; 3(6):6-10.

Lansky EP, Paavilainen HM, Pawlus AD, Newman RA. Ficus spp. (fig): Ethnobotany and potential as anticancer and anti- inflammatory agents. J Ethnopharmacol. 2008; 119(2):195-213.

Wau J. Phytochemical and antimicrobial assessment of Ficus botryocarpa Miq. (MORACEAE). Papua New Guinea: Papua New Guinea University of Technology; 2013.

Ramutton T, Phawong C, Na Ubol P, Nualkaew N, Tassaneetrithep B. Cytotoxicity study of Triphala and Ficus botryocarpa Miq. Isan J Pharm Sci. 2013; 9(1):220.

Puangcho P and Nualkaew N. Alpha-glucosidase inhibition of Thai local vegetable extracts. Isan J Pharm Sci. 2013; 9(1):218.

Taepongsorat L and Konsue A. Biological screening of trijannarose as a recipe from Thai traditional medicine. Phcog Res. 2019; 11(2):110-114.

Indracanti M, ChV S, Sisay T. A 96 well-microtiter plate ABTS based assay for estimation of antioxidant activity in green leafy vegetables. Biotechnol Int. 2019; 12(2):22-29.

Puangpornpitag D, Tankitijano P, Sumalee A, Konsue A. Phytochemical screening and antioxidant activities of the seedling extracts from Inca Peanut (Plukenetia volubilis). Pharmacogn J. 2021; 13(1):1-7.

Ali H, Houghton PJ, Soumyanath A. Alpha-amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J Ethnopharmacol. 2006; 107(3):449-455.

Munteanu IG and Apetrei C. Analytical methods used in determining antioxidant activity: A Review. Int J Mol Sci. 2021; 22(7): 30 pages.

Salehi B, Prakash Mishra A, Nigam M, Karazhan N, Shukla I, Kiełtyka-Dadasiewicz A, Sawicka B, Głowacka A, Abu- Darwish MS, Hussein Tarawneh A, Gadetskaya AV, Cabral C, Salgueiro L, Victoriano M, Martorell M, Docea AO, Abdolshahi A, Calina D, Sharifi-Rad J. Ficus plants: State of the art from a phytochemical, pharmacological, and toxicological perspective. Phytother Res. 2021; 35(3):1187-1217.

Joseph B and Raj SJ. Phytopharmacological and phytochemical properties of three ficus species - An overview. Int J Pharma Bio Sci. 2010; 1(4):246-253.

Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT. Traditional uses, phytochemistry, and pharmacology of Ficus carica: A review. Pharm Biol. 2014; 52(11):1487-1503.

Tamfu AN, Munvera AM, Botezatu AV, Talla E, Ceylan O, Fotsing MT, Mbafor JT, Shaheen F, Dinica RM. Synthesis of benzoyl esters of β-amyrin and lupeol and evaluation of their antibiofilm and antidiabetic activities. Results Chem. 2022; 4: Article ID 100322:14 pages.

Sultana R, Alashi AM, Islam K, Saifullah M, Haque CE, Aluk RE. Inhibitory activities of polyphenolic extracts of Bangladeshi vegetables against alpha-amylase, alpha-glucosidase, pancreatic lipase, renin, and angiotensin-converting enzyme. Foods. 2020; 9(7):13 pages.

Zhu J, Chen C, Zhang B, Huang Q. The inhibitory effects of flavonoids on alpha-amylase and alpha-glucosidase. Crit Rev Food Sci Nutr. 2020; 60(4):695-708.

Tchimene MK, Nwaehujor CO, Ezenwali M, Okoli CC, Iwu MM. Free radical scavenging activity of lupeol isolated from the methanol leaf extract of Crateva adansonii Oliv. (Capparidaceae). Int J Pharmacogn Phytochem Res. 2016; 8(3):419-426.