Bioactive Compounds Characterization and Antimicrobial Potentials of Crude Extract of Curvularia lunata, a Fungal Endophyte from Elaeis guineensis.

doi.org/10.26538/tjnpr/v6i3.16

Authors

  • David C. Nwobodo Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Anambra State, Nigeria
  • Peter M. Eze Department of Environmental Health Science, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University, Nnewi Campus, Anambra State, Nigeria
  • Ugochukwu M. Okezie Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Anambra State, Nigeria
  • James O. Okafoanyali Biotechnology Research Center, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
  • Festus B.C. Okoye Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria;
  • Charles O. Esimone Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Anambra State, Nigeria

Keywords:

Curvularia lunata, Antimicrobial activity, GC-MS analysis, Bioactive metabolites

Abstract

Bioactive compounds of microbial origin remain the frontline for novel drug discovery and development in the pharmaceutical industry. Endophytic fungi are gaining much attention as reservoirs of bioactive compounds with beneficial therapeutic activities. The present study is focused on evaluating the chemical compositions and antimicrobial activity of secondary metabolites produced by Curvularia lunata, an endophytic fungus of Elaeis guineensis. The endophytic fungus was isolated from healthy leaves of E. guineensis using standard methods and identified using internal transcribed spacer (ITS-rDNA) sequence analysis. The fungus was subjected to solid-state fermentation and secondary metabolites extracted using ethyl acetate and concentrated under a vacuum. The crude extracts were screened for antimicrobial activity against selected pathogenic bacteria and Candida albicans using the agar diffusion method. The bioactive components of the fungal extracts were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Crude extract of C. lunata at 1mg/mL displayed potent antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, with inh ibition zones of 8 ± 0.6 mm, 2 ± 1.0 mm, and 10 ± 1.5 mm respectively. GC- MS analysis revealed the presence of compounds, such as 2,4-di-tert-butylphenol, γ-terpinene, heptadecane, 2,6,10,14-tetramethyl, tetradecanoic acid, 2-hydroxy-, methyl ester, p-cymene, oxirane (chloromethyl) among others in the fungal extracts. These compounds are known to possess several beneficial biological properties. Hence from the results of this study, the endophytic fungus C. lunata, isolated from E. guineensis produce interesting bioactive compounds that can be explored in the development of effective antimicrobials and other pharmaceutical agents. 

Author Biography

David C. Nwobodo, Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Anambra State, Nigeria

Department of Microbiology, Renaissance University, Ugbawka, Enugu State, Nigeria

References

Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, TemmL V, Wang L, Schwaiger S, Heiss EH. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv. 2015; 33:1582-1614.

Huang L, Zhu X, Zhou S, Cheng Z, Shi K, Zhang C, Shao H. Phthalic acid esters: natural sources and biological activities. Toxins. 2021; 13:495.

Porras-Alfaro A and Bayman P. Hidden fungi, emergent properties: endophytes and microbiomes. Ann Rev

Phytopathol. 2011; 49:291-315.

Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Riyaz-Ul-Hassan S. Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. SpringerPlus. 2013; 2(8):1-14.

Strobel G. The Emergence of Endophytic Microbes and Their Biological Promise. J Fungi. 2018; 4:57.

WHO. WHO global report on traditional and complementary medicine 2019. Geneva: World Health Organization. 2019; Licence: CC BY-NC-SA 3.0 IGO.

Irvin TT. Wound healing. Arch Emerg Med. 1985; 2:3-10.

Soundararajan V and Sreenivasan S. Antioxidant activity of Elaeis guineensis leaf extract: An alternative nutraceutical approach in impeding aging. APCBEE Procedia. 2012; 2:153-159.

Zhang Y, Schoch CL, Fournier J, Crous PW, de Gruyter J, Woudenberg JH, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD. Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Stud ycol. 2009; 64:85-102S5.

Pandey PK, Singh S, Yadav RNS, Singh AK. Fungal endophytes: promising tools for pharmaceutical science. Int J Pharm Sci Rev Res. 2014; 252:128-138.

Zakaria L, Jamil MIM, Anuar ISM. Molecular characterisation of endophytic fungi from roots of wild banana (Musa acuminata). Trop Life Sci Res. 2016; 27(1):153-162.

Vinu K, Krishna V, Krishnappa M. Molecular identification and antibacterial activity of endophytic fungi Curvularia

lunata in Wendlandia thyrsoidea (Roth) Steud. of central western Ghats region of Chikkamagaluru, Karnataka. Int J

Bot Stud. 2021; 6(4):436-439.

Petrini O. Fungal endophyte of tree leaves. In Andrews, J.H. and Hirano, S.S. (eds.), Microbial Ecology of Leaves.

Springer- Verlag, New York. USA. 1991; 179-197p.

Nicoletti R and Fiorentino A. Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta.

; https://doi.org/10.3390/agriculture5040918. Accessed 11 Oct 2021.

Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L. Recent developments and future prospects of antimicrobial

metabolites produced by endophytes. Microbiol Res. 2010; 165(6):437-449.

Martin R and Dombrowski JE. Isolation and identification of fungal endophytes from grasses along the Oregon Coast. Am J Plant Sci. 2015; 6(19):3216-3230.

Nwobodo DC, Ihekwereme CP, Okoye FBC. Screening of endophytic fungal metabolites from Cola nitida leaves for

antimicrobial activities against clinical isolates of Pseudomonas aeruginosa. EuroBiotech J. 2020a; 4(3):161-166.

Selim KA, El-Beih AA, Abdel-Rahman TM, El-Diwany AI. Biology of endophytic fungi. Curr Res Environ Appl Mycol. 2012; 2(1):31-82.

Nwobodo DC, Ihekwereme CP, Ikem CJ, Okoye FBC. The anti-pseudomonal potentials of metabolites from some

endophytic fungi isolated from Garcinia kola leaves. Novel Res Microbiol J. 2020b; 4(3):845-855.

Ibrahim M, Oyebanji E, Fowora M, Aiyeolemi A, Orabuchi C, Akinnawo B, Adekunle AA. Extracts of endophytic fungi from leaves of selected Nigerian ethnomedicinal plants exhibited antioxidant activity. BMC Complement Med Ther. 2021; 21:98.

Okoye FBC, Lu S Nworu CS, Abdessamad D. Depsidone and diaryl ether derivatives from the fungus Corynespora

cassiicola, an endophyte of Gongronema latifolium. Tetrahedron Lett. 2013; 54:4210-4214.

Eze PM, Nnanna JC, Okezie U, Buzugbe HS, Abba CC, Chukwunwejim CR, Okoye FBC, Esimone CO. Screening of metabolites from endophytic fungi of some Nigerian medicinal plants for antimicrobial activities. EuroBiotech J. 2019; 3(1):10-19.

Buss AD and Butler MS. Natural product chemistry for drug discovery. The Royal Society of Chemistry, Cambridge. 2010; 153p.

Khiralla A, Mohamed IE, Tzanova T, Schohn H, Deschaumes S, Hehn A, Andre P, Carre G, Spina R, Lobstein A, Yagi S, Laurain-Mattar D. Endophytic fungi associated with Sudanese medicinal plants show cytotoxic and antibiotic potential. FEMS Microbiol. Lett. 2016; 363(11):fnw089.

Tuppad DS and Shishupala S. Endophytic mycobiota of medicinal plant Butea monosperma. Int J Curr Microbiol Appl Sci. 2013; 2:615-627.

Liang H, Xing Y, Chen J, Zhang D, Guo S, Wang C. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae). BMC Compl Altern Med. 2012; 12:1.

Ananda D, Chandrashekhar GJ, Nivya MT, Manjunath HM, Jagadeesha P, Sunil KR. Antimicrobial and larvicidal potential of endophytic fungi isolated from Tragia involucrata Linn. Ann Plant Sci. 2017; 6(1):1494-1498.

Kaczorowski GJ, Garcia ML, Bode J, Hess SD, Patel UA. The importance of being profiled: improving drug candidate

safety and efficacy using ion channel profiling. Front Pharmacol. 2011; 2(78):1–11.

Sharma D, Pramanik A, Agrawa PK. Evaluation of bioactive secondary metabolites from endophytic fungus

Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3 Biotech. 2016; 6:210.

Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;

(4):593-656.

Cotter PD, Hill C, Ross RP. Food microbiology: bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005; 3(10):777-788.

Idris A, Ietidal A, Idris M. Antibacterial activity of endophytic fungi extracts from the medicinal plant Kigelia africana. Egypt Acad J Biol Sci. 2013; 5(1):1-9.

Ugwu MC, Ochiaja DE, Nwobodo DC, Chimezie C, Ugwu CB. Antimicrobial potentials of idiolites of endophytic fungi isolated from the leaves of Dacryodes edulis. Afr J Biotechnol. 2021; 20(6):251-255.

Chong KH, Zurainia Z, Sasidharanb S, Kalnisha Devib PV, Yoga Lathac L, Ramanathan S. Antimicrobial activity of Elaeis guineensis Leaf. Pharmacologyonline. 2008; 3:379-386.

Nartey D, Gyesi JN, Borquaye LS. Chemical Composition and Biological Activities of the Essential Oils of Chrysophyllum albidum G. Don (African Star Apple). Biochem Res Int. 2021. Article ID 9911713.

Osuntokun OT and Cristina GM. Bio isolation, chemical purification, identification, antimicrobial and synergistic efficacy of extracted essential oils from stem bark extract of Spondias mombin (Linn). Int J Mol Biol. 2019; 4(4):135-143.

Teke GN, Lunga PK, Wabo HK, Kuiate JR, Vilarem G, Giacinti G, Kikuchi H, Oshima Y. Antimicrobial and antioxidant properties of methanol extract, fractions and compounds from the stem bark of Entada abyssinica Stend ex A. Satabie. BMC Compl Altern Med. 2011; 11:57.

Baron NC and Rigobelo EC. Endophytic fungi: a tool for plant growth promotion and sustainable agriculture, Mycology. 2022; 13(1):39-55.

Ragasa CY, Jorvina K, Rideout JA. Antimicrobial compounds from Artocarpus heterophyllus. Philipp J Sci. 2004; 133(2):97-101.

Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA. Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of mycodiesel production by NRRL 50072. Microbiol. 2010; 156:3814-3829.

Li GX and Liu ZQ. Unusual antioxidant behavior of r- and γ-terpinene in protecting methyl linoleate, DNA, and

erythrocyte. J Agric Food Chem. 2009; 57:3943-3948.

Kanjana M, Kanimozhi G, Udayakumar R, Panneerselvam A. GC-MS analysis of bioactive compounds of endophytic

fungi Chaetomium globosum, Cladosporium tenuissimum and Penicillium janthinellum. J Biomed Pharm Sci. 2019;

:123.

Kaur N, Arora DS, Kalia N, Kaur M. Bioactive potential of endophytic fungus Chaetomium globosum and GC-MS analysis of its responsible components. Sci Rep. 2020; 10:18792.

Wei Y, Zhu J, Nguyen A. Urinary concentrations of dichlorophenol pesticides and obesity among adult participants in the U.S. National Health and Nutrition Examination Survey (NHANES) 2005-2008. Int J Hyg Environ Health. 2014; 217:294-299.

Mujeeb F., Bajpai P, Pathak N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive

components from leaves of Aegle marmelos. BioMed Res Int. 2014; 497606:1-11.

Burt S. Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol. 2004; 94:223-253.

Inoue Y, Shiraishi A, Hada T, Hamashima H, Shimada J. The antibacterial effects of myrcene on Staphylococcus

aureus and its role in the essential oil of the tea tree (Melaleuca alternifolia). Nat Med. 2004; 58:10-14. 48. Bai X and Tang J. Myrcene exhibits antitumor activity against lung cancer cells by inducing oxidative stress and apoptosis mechanisms. Nat Prod Commun. 2020; 15:1–7.

Varsha KK, Devendra L, Shilpa G, Priya S, Pandey A, Nampoothiri KM. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int J Food Microbiol. 2015; 211:44-50.

Kusch P, Deininger S, Specht S, Maniako R, Haubrich S, Pommerening T, Thoo Lin PK, Hoerauf A, Kaiser A. In vitro and in vivo antimalarial activity assays of seeds from Balanites aegyptiaca: compounds of the extract show growth inhibition and activity against plasmodial aminopeptidase. J Parasitol Res. 2011. Article ID 368692.

Choi SJ, Kim JK, Kim HK, Harris K, Kim CJ, Park GG, Park CS, Shin DH. 2,4-Di-tert-butylphenol from sweet potato protects against oxidative stress in PC12 cells and inmice. J Med Food. 2013; 16:977-983.

Zhao F, Wang P, Lucardi RD, Su Z, Li S. Natural sources and bioactivities of 2,4-Di-Tert-butylphenol and its analogs. Toxins. 2020; 12:35.

Ashoura ML, El-Readia M, Younsb M, Mulyaningsiha S, Sporera F, Efferthc T, Wink M. Chemical composition and biological activity of the essential oil obtained from Bupleurum marginatum (Apiaceae). J Pharm Pharmacol. 2009; 61:1-9.

Husain A and Shaharyar M. Synthesis and antibacterial activity of epoxides derived from chalcones. Asian J Chem. 2005; 17(1):624-626.

Cao XL, Sparling M, Dabeka R. p-Cymene, a natural antioxidant, in Canadian total diet foods: occurrence and dietary exposures. J Sci Food Agric. 2019; 99(12):5606-5609.

Balahbib A, El Omari N, Hachlafi NE, Lakhdar F, El Menyiy N, Salhi N, Mrabti HN, Bakrim S, Zengin G, Bouyahya A. Health beneficial and pharmacological properties of p-cymene. Food Chem Toxicol. 2021; 153:112259.

Li GX and Liu ZQ. Unusual antioxidant behavior of r- and γ-terpinene in protecting methyl linoleate, DNA, and

erythrocyte. J Agric Food Chem. 2009; 57:3943-3948.

de Oliveira Ramalho TR, Pacheco de Oliveira MT, de Araujo Lima AL, Bezerra-Santos CR, Piuvezam MR. Gamma-terpinene modulates acute inflammatory response in mice. Planta Med. 2015; 81:1248-1254.

Meher A, Behera B, Nanda BK. GC-MS Investigation of phytocomponents present in ethanolic extract of plant Ichnocarpus frutescens (L.) W. T. aiton aerial part. Int J Pharm Sci Res. 2019; 10(10):4711-4716.

Duke JA. Database Manual of Biologically Active Phytochemicals and Their Activities (1st ed.). CRC Press. 1992.

Strobel G, Tomshek A, Geary B, Spackowicz D, Strobel S, matter S, Mann R. Endophyte strain NRRL 50072 producing volatile organics is a species of Ascocoryne. Mycol. 2010; 1(3):187-194.

Henary M, Paranjpe S, Owens E. Substituted benzothiazoles: synthesis and medicinal characteristics. Heterocycl Comm. 2013; 19(2):89-99.

Akin-Osanaiye CB, Gabriel AF, Alebiosu RA. Characterization and antimicrobial screening of ethyl oleate isolated from phyllantis amarus (Schum and Thonn). Ann Biol Res. 2011; 2(2):298-305.

Chen Y and Dai G. Acaricidal activity of compounds from Cinnamomum camphora (L.) Presl against the carmine spider mite, Tetranychus cinnabarinus. Pest Manag Sci. 2015; 71:1561-1571.

Sindhu S and Manorama S. GC-MS determination of bioactive components of Polycarpaea corymbosa lams (Caryophyllaceae). Hygeia J D Med. 2013; 5(1):5-9

Bharathy V, Sumathy BM, Uthayakumari F. Determination of phytocomponents by GC-MS in leaves of Jatropha gossypifolia L.,” Science Research Reporter. 2012; 2(3):286-290.

Downloads

Published

2022-05-01

How to Cite

C. Nwobodo, D., M. Eze, P., M. Okezie, U., O. Okafoanyali, J., B.C. Okoye, F., & O. Esimone, C. (2022). Bioactive Compounds Characterization and Antimicrobial Potentials of Crude Extract of Curvularia lunata, a Fungal Endophyte from Elaeis guineensis.: doi.org/10.26538/tjnpr/v6i3.16. Tropical Journal of Natural Product Research (TJNPR), 6(3), 395–402. Retrieved from https://tjnpr.org/index.php/home/article/view/140

Most read articles by the same author(s)