A Review of the Phytochemical, Usability Component, and Molecular Mechanisms of Moringa oleifera
http://www.doi.org/10.26538/tjnpr/v6i12.1
Keywords:
Plant, Phytochemical Components, Moringa oleifera, Molecular mechanisms, Biological activitiesAbstract
Moringa oleifera (M. oleifera) or kelor is a well-known herbal plant. M. oleifera is believed to be a magical tree because it provides tremendous benefits and is a rich source of nutrients for all living things. The potential value of M. oleifera in preventing or treating various chronic diseases is enhanced. There are still scattered details about phytochemical and usability components and their molecular mechanisms. The purpose of this article is to collect the various scattered data to make it easier for readers to get the information. Thus, in this study, we discussed information comprehensively for the phytochemical components of M. oleifera and the potential benefits of biological activities. This review will give information to open the possible utilization of M. oleifera, especially for the patient's medication and/or supplementation.
References
Bartlett DB, Willis LH, Slentz CA, Hoselton A, Kelly L, Huebner JL, Kraus VB, Moss J, Muehlbauer MJ, Spielmann G, Kraus WE, Lord JM, Huffman, KM. Ten weeks of highintensity interval walk training is associated with reduced disease activity and improved innate immune function in older adults with rheumatoid arthritis: A pilot study. Arthritis Res Ther. 2018; 20(1):1-15.
Bartlett DB, Slentz CA, Willis LH, Hoselton A, Huebner JL, Kraus VB, Moss J, Muehlbauer MK, Spielmann G, Muoio DM, Koves TR, Wu H, Huffman KM, Lord JM, Kraus WE. Rejuvenation of Neutrophil Functions in Association With Reduced Diabetes Risk Following Ten Weeks of Low-Volume High Intensity Interval Walking in Older Adults With Prediabetes – A Pilot Study. Front Immunol. 2020; 11:1-14.
Flack KD, Davy BM, Deberardinis M, Boutagy NE, McMillan RP, Hulver MW, Frisard MI, Anderson AS, Savla J, Davy KP. Resistance exercise training and in vitro skeletal muscle oxidative capacity in older adults. Physiol Rep. 2016; 4(13):1-8.
Nyberg M, Blackwell JR, Damsgaard R, Jones AM, Hellsten Y, Mortensen SP. Lifelong physical activity prevents an age-related reduction in arterial and skeletal muscle nitric oxide bioavailability in humans. J Physiol. 2012; 590(21):5361-5370.
Orlando P, Silvestri S, Galeazzi R, Antonicelli R, Marcheggiani F, Cirilli I, Bacchetti T, Tiano L. Effect of ubiquinol supplementation on biochemical and oxidative stress indexes after intense exercise in young athletes. Redox Rep. 2018; 23(1):136-145.
Park SY, Pekas EJ, Headid III RJ, Son WM, Wooden TK, Song J, Layec G, Yadav SK, Mishra PK, Pipinos II. Acute mitochondrial antioxidant intake improves endothelial function, antioxidant enzyme activity, and exercise tolerance in patients with peripheral artery disease. Am J Physiol Heart Circ Physiol. 2020; 319:456-467.
Cho SY, So WY, Roh HT. Effect of C242T Polymorphism in the Gene Encoding the NAD(P)H Oxidase p22phox Subunit and Aerobic Fitness Levels on Redox State Biomarkers and DNA Damage Responses to Exhaustive Exercise: A Randomized Trial. Int J Environ Res Public Health. 2020; 17(12):4215-4226.
Yimcharoen M, Kittikunnathum S, Suknikorn C, Nak-on W, Yeethong P, Anthony TG, Bunpo P. Effects of ascorbic acid supplementation on oxidative stress markers in healthy women following a single bout of exercise. J Int Soc Sports Nutr. 2019;16(1):1-9.
Morrison D, Hughes J, della Gatta PA, Mason S, Lamon S, Russel AP, Wadley GD. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radic Biol Med. 2015; 89:852-862.
Vezzoli A, Dellanoce C, Mrakic-Sposta S, Montorsi M, Moretti S, Tonini A, Pratali L, Accinni R. Oxidative Stress Assessment in Response to Ultraendurance Exercise: Thiols Redox Status and ROS Production according to Duration of a Competitive Race. Oxid Med Cell Longev. 2016; 2016:1-13.
Koenig RT, Dickman JR, Kang CH, Zhang T, Chu YF, Ji LL. Avenanthramide supplementation attenuates eccentric exercise-inflicted blood inflammatory markers in women. Eur J Appl Physiol. 2016; 116:67-76.
Trewin, A. J., Lundell, L. S., Perry, B. D., Patil, K. V., Chibalin, A. V., Levinger, I., McQuade, L. R., Stepto, N. K. Effect of Nacetylcysteine infusion on exercise-induced modulation of insulin sensitivity and signaling pathways in human skeletal muscle. Am J Physiol Endocrinol Metab. 2015; 309(4):388-397.
Martin N, Smith AC, Dungey MR, Young HML, Burton JO, Bishop NC. Exercise during hemodialysis does not affect the phenotype or prothrombotic nature of microparticles but alters their proinflammatory function. Physiol Rep. 2018; 6(19):1-13.
Jenkins NT, Landers RQ, Thakkar SR, Fan X, Brown MD, Prior SJ, Spangenburg EE, Hagberg JM. Prior endurance exercise prevents postprandial lipaemia-induced increases in reactive oxygen species in circulating CD31 + cells. J Physiol. 2011;589(22):5539-5553.
Petersen AC, McKenna MJ, Medved I, Murphy KT, Brown MJ, Gatta PD, Cameron-Smith D. Infusion with the antioxidant Nacetylcysteine attenuates early adaptive responses to exercise in human skeletal muscle. Acta Physiologica. 2012; 204(3):382-392.
Mrakic-Sposta S, Gussoni M, Montorsi M, Porcelli S, Vezzoli A. Assessment of a Standardized ROS Production Profile in Humans by Electron Paramagnetic Resonance. Oxid Med Cell Longev. 2012; 2012:1-10.
Dal Negro RW, Visconti M. Erdosteine reduces the exerciseinduced oxidative stress in patients with severe COPD: Results of a placebo-controlled trial. Pulmonary Pharmacology & Therapeutics. 2016; 41:48-51.
Place N, Ivarsson N, Venckunas T, Westerblad H. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca 2+ leak after one session of high-intensity interval exercise. PNAS. 2015; 112(50):15492-15498.
Hajizadeh MB, Tartibian B, Chehrazi M. The effects of three different exercise modalities on markers of male reproduction in healthy subjects: a randomized controlled trial. Reproduction. 2017; 153(2):157-174.
Pileggi CA, Hedges CP, D’Souza RF, Durainayagam BR, Markworth JF, Hickey AJR, Mitchell CJ, Cameron-Smith D. Exercise recovery increases skeletal muscle H2O2 emission and mitochondrial respiratory capacity following two-weeks of limb immobilization. Free Rad Biol and Med. 2018; 124:241-248.
Clifford T, Bowman A, Capper T, Allerton DM, Foster E, Birch-Machin M, Lietz G, Howatson G, Stevenson EJ. A pilot study investigating reactive oxygen species production in capillary blood after a marathon and the influence of an antioxidant-rich beetroot juice. Appl Physiol Nutr Metab. 2018; 43(3):303-306.
Caruana H and Marshall JM. Effects of modest hyperoxia and oral vitamin C on exercise hyperaemia and reactive hyperaemia in healthy young men. Eur J Appl Physiol. 2015; 115(9):1995-2006.
Harms-Ringdahl M, Jenssen D, Haghdoost S. Tomato juice intake suppressed serum concentration of 8-oxodG after extensive physical activity. Nutr J. 2012; 11(29):1-5.
White SH and Warren LK. Submaximal exercise training, more than dietary selenium supplementation, improves antioxidant status and ameliorates exercise-induced oxidative damage to skeletal muscle in young equine athletes. J Anim Sci. 2020;98(7):1-5.
Garten R, Goldfarb A, Crabb B, Waller J. The Impact of Partial Vascular Occlusion on Oxidative Stress Markers during Resistance Exercise. Int J Sports Med. 2015; 36(07):542-549.
Ranadive SM, Joyner MJ, Walker BG, Taylor JL, Casey DP. Effect of vitamin C on hyperoxia-induced vasoconstriction in exercising skeletal muscle. J Appl Physiol. 2014; 117(10):1207-1211.
Goulart MJVC, Pisamiglio DS, Moller GB, Dani C, Alves FD, Bock PM, Schneider CD. Effects of grape juice consumption on muscle fatigue and oxidative stress in judo athletes: a randomized clinical trial. An Acad Bras de Ciênc. 2020;92(4):1-14.
Hajizadeh Maleki B, Tartibian B. High-intensity interval training modulates male factor infertility through antiinflammatory and antioxidative mechanisms in infertile men: A randomized controlled trial. Cytokine. 2020; 125:154861.
Cobley JN, McGlory C, Morton JP, Close GL. NAcetylcysteine’s Attenuation of Fatigue After Repeated Bouts of Intermittent Exercise: Practical Implications for Tournament Situations. Int J Sport Nutr Exerc Metab. 2011; 21(6):451-461.
Dopheide, J. F., Scheer, M., Doppler, C., Obst, V., Stein, P., Vosseler, M., Abegunewardene, N., Gori, T., Münzel, T., Daiber, A., Radsak, M. P., Espinola-Klein, C. Change of walking distance in intermittent claudication: impact on inflammation, oxidative stress and mononuclear cells: a pilot study. Clin Res in Cardiol. 2015; 104(9):751-763.
Ahmad NS, Abdul Aziz A, Kong KW, Hamid MSA, Cheong JPG, Hamzah SH. Dose-Response Effect of Tualang Honey on Postprandial Antioxidant Activity and Oxidative Stress in Female Athletes: A Pilot Study. J Altern Complementary Med. 2017; 23(12):989-995.
Sanguigni V, Manco M, Sorge R, Gnessi L, Francomano D. Natural antioxidant ice cream acutely reduces oxidative stress and improves vascular function and physical performance in healthy individuals. Nutrition. 2017; 33:225-233.
Broome SC, Braakhuis AJ, Mitchell CJ, Merry TL. Mitochondria-targeted antioxidant supplementation improves 8 km time trial performance in middle-aged trained male cyclists. J Int Soc Sports Nutr. 2021; 18(1):1-11.
Vasconcelos Gouveia, S. S., Pertinni de Morais Gouveia, G., Souza, L. M., Cunha da Costa, B., Iles, B., Pinho, V. A., Vasconcelos, S. S., Rolim Medeiros, J. V., Lago da Silva, R., Porto Pinheiro, L. G. The effect of pilates on metabolic control and oxidative stress of diabetics type 2 – A randomized controlled clinical trial. J Bodyw Mov Ther. 2021; 27:60-66.
Tolahunase M, Sagar R, Dada R. Impact of Yoga and Meditation on Cellular Aging in Apparently Healthy Individuals: A Prospective, Open-Label Single-Arm Exploratory Study. Oxid Med Cell Longev. 2017; 2017:1-9.
Yee MM. A Comparative Studies on Antimicrobial Activity and Antioxidant Activity on Different Extracts of Leaf, Bark and Root of Moringa oleifera Lamk (Drumstick tree). Int J of Recent Innov Acad Res. 2019; 3(7):24–34.
Ezeamuzie IC, Ambakederemo AW, Shode FO, Ekwebelem SC. Antiinflammatory effects of Moringa oleifera root extract. Pharm Biol. 1996; 34(3):207–212.
Okereke CJ and Akaninwor JO. The protein quality of raw leaf, seed and root of Moringa oleifera grown in Rivers State, Nigeria. Scholars Research Library Annals of Biological Research. 2013; 4(11):34–38.
Faizi S, Siddiqui BS, Saleem R, Aftab K, Shaheen F, Gilani AH. Hypotensive constituents from the pods of Moringa oleifera. Planta Med. 1998; 64:225–228.
Paliwal R, Sharma V, Pracheta, Sadhna S. Elucidation of free radical scavenging and antioxidant activity of aqueous and hydro-ethanolic extract of Moringa oleifera pods. Res J Pharm Technol. 2011; 4(4):566-571.
Sharma V, Paliwal R, Janmeda P, Sharma S. Renoprotective effects of Moringa oleifera pods in 7, 12 dimethylbenz [a] anthracene-exposed mice. J Chin Integr Med. 2012; 10(10):1171–1178.
Paikra BK, Dhongade HKJ, Gidwani B. Phytochemistry and pharmacology of Moringa oleifera Lam. J Pharmacopunct. 2017; 20(3):194–200.
Kou X, Li B, Olayanju JB, Drake JM, Chen N. Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients. 2018; 10(3):1–12.
Bhattacharya A, Tiwari P, Sahu PK, Kumar S. A review of the phytochemical and pharmacological characteristics of Moringa oleifera. J Pharm Bioallied Sci. 2018;10(4):181–191.
Rani NZA, Husain K, Kumolosasi E. Moringa genus: A review of phytochemistry and pharmacology. Front Pharmacol. 2018;9:1–26.
Saa RW, Fombang EN, Ndjantou EB, Njintang NY. Treatments and uses of Moringa oleifera seeds in human nutrition: A review. Food Sci Nutr. 2019; 7(6):1911-1919.
Baldisserotto A, Buso P, Radice M, Dissette V, Lampronti I, Gambari R, et al. Moringa oleifera leaf extracts as multifunctional ingredients for “natural and organic” sunscreens and photoprotective preparations. Molecules. 2018; 23(3):1–16.
Ma ZF, Ahmad J, Zhang H, Khan I, Muhammad S. Evaluation of phytochemical and medicinal properties of Moringa(Moringa oleifera) as a potential functional food. S Afr J Bot. 2020; 129:40–46.
Bharali R, Tabassum J, Azad MRH. Chemomodulatory effect of Moringa oleifera, Lam, on hepatic carcinogen metabolizing enzymes, anti-oxidant parameters and skin papillomagenesis in mice. Asian Pac J Cancer Prev. 2003; 4(2):131–139.
Saini RK, Sivanesan I, Keum YS. Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech. 2016; 6(2):1–14.
Rashid U, Anwar F, Moser BR, Knothe G. Moringa oleifera oil: A possible source of biodiesel. Bioresour Technol. 2008;99(17): 8175–8179.
Karthivashan G, Arulselvan P, Wei-tan S, Fakurazi S. The molecular mechanism underlying the hepatoprotective potential of Moringa oleifera leaves extract against acetaminophen induced hepatotoxicity in mice. J Funct Foods. 2015; 17:115–126.
Meireles D, Gomes J, Lopes L, Hinzmann M, Machado J. A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: integrative approach on conventional and traditional Asian medicine. Adv Trad Med. 2020; 20:495-515.
Fitriana WD, Ersam T, Shimizu K, Fatmawati S. Antioxidant activity of Moringa oleifera extracts. Indones J Chem. 2016;16:297–301.
Nwidu LL, Elmorsy E, Aprioku JS, Siminialayi I, Carter WG. In Vitro Anti-Cholinesterase and Antioxidant Activity of Extracts of Moringa oleifera Plants from Rivers State, Niger Delta, Nigeria. Medicines. 2018; 5(3):1–17.
Karadi RV, Gadge NB, Alagawadi KR, Savadi RV. Effect of Moringa oleifera Lam. root-wood on ethylene glycol induced urolithiasis in rats. J Ethnopharmacol. 2006; 105:306–311.
Junior A, Sanon PJ, Lorde D. Phenotypic diversity of Haitian Benzolive (Moringa oleifera Lam.). Pla Sci. 2020; 03:1–6.
Cruz da Silva AV, Ferreira dos Santos AR, Da- Silva Lédo A, Feitosa RB, Almeida CS, Melo da Silva G, Rangel MSA. Moringa Genetic Diversity From Germplasm Bank Using RAPD Markers. Trop Subtrop Agroecosystems. 2012; 15:31–39.
Kleden MM, Soetanto H, Kusmartono K. Genetic diversity evaluation of Moringa oleifera, Lam from East Flores Regency
using marker Random Amplified Polymorphic DNA (RAPD) and its relationship to chemical composition and in vitro gas production. AGRIVITA J Agric Sci. 2017; 39:219–231.
Raja S, Bagle BG, More TA. Drumstick (Moringa oleiferaLamk.) improvement for semiarid and arid ecosystem: Analysis of environmental stability for yield. J Plant Breed Crop Sci. 2013; 5:164–170.
Mgendi MG, Nyomora AM, Manoko MK. Using morphological markers to assess variations between and within cultivated and non-cultivated provenances of Moringa oleifera Lam. in Tanzania. J Life Sci. 2011; 5:387–392.
Jaiswal, D., Rai, P. K., Mehta, S., Chatterji, S., Shukla, S., Rai, D. K., Sharma, G., Sharma, B., Khair, S., Watal, G. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac J Trop Med. 2013;6: 426–432.
Metwally FM, Rashad HM, Ahmed HH, Mahmoud AA, Raouf ERA, Abdalla AM. Molecular mechanisms of the anti-obesity potential effect of Moringa oleifera in the experimental model. Asian Pac J Trop Biomed. 2017; 7:214–221.
Babu PV, Liu D, Gilbert ER. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem. 2013; 24:1777–1789.
Oh YS and Jun HS. Role of bioactive food components in diabetes prevention: Effects on Beta-cell function and preservation. Nutr Metab Insights. 2014; 7:51–59.
Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J Diabetes Metab Disord. 2013; 12:1–9.
Waterman C, Rojas-Silva P, Tumer TB, Kuhn P, Richard AJ, Wicks S, Stephens JM, Wang Z, Mynatt R, Cefalu W, Raskin I. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance and hepatic gluconeogenesis in mice. Mol Nutr Food Res. 2015; 59:1013–1024.
Kim YJ and Kim HS. Screening Moringa species focused on development of locally available sustainable nutritional supplements. Nutr Res Pract. 2019; 13(6):529-534.
Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol. 2010; 48:937–943.
Chen GL, Xu YB, Wu JL, Li N, Guo MQ. Hypoglycemic and hypolipidemic effects of Moringa oleifera leaves and their functional chemical constituents. Food Chem. 2020; 333:127478.
Lee YJ, Choi HS, Seo MJ, Jeon HJ, Kim KJ, Lee BY. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish. Food Funct. 2015;6:2824–2833.
Sangkitikomol W, Rocejanasaroj A, Tencomnao T. Effect of Moringa oleifera on advanced glycation end-product formation and lipid metabolism gene expression in HepG2 cells. Genet Mol Res. 2014; 13:723–735.
Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, Manfrin A, Ingallina E, Sommaggio R, Piazza S, Rosato A, Piccolo S, Sal GD. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol. 2014; 16:357–366.
Boopathy GTK and Hong W. Role of Hippo PathwayYAP/TAZ Signaling in Angiogenesis. Front Cell Dev Biol. 2019; 7:1–12.
An Y, Kang Q, Zhao Y, Hu X, Li N. Lats2 Modulates Adipocyte Proliferation and Differentiation via Hippo Signaling.PLoS One. 2013; 8:1-10.
Piccolo S, Dupont S, Cordenonsi M. The Biology of YAP/TAZ: Hippo Signaling and Beyond. Physiol Rev. 2014; 94:1287–1312.
Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 2017; 18:758–770.
Rausch V, Hansen CG. Review: The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends Cell Biol. 2020;30:32–48.
Barbagallo I, Vanella L, Distefano A, Nicolosi D, Maravigna A, Lazzarino G, Di Rosa M, Tibullo D, Acquaviva R, Li Volti G. Moringa oleifera Lam. Improves lipid metabolism during adipogenic differentiation of human stem cells. Eur Rev Med Pharmacol Sci. 2016; 20:5223–5232.
Hwang JH, Kim AR, Kim KM, Park JI, Oh HT, Moon SA, Byun MR, Jeong H, Kim HK, Yaffe MB, Hwang ES, Hong J-H. TAZ couples Hippo/Wnt signalling and insulin sensitivity through Irs1 expression. Nat Commun. 2019; 10(1):1-11.
Tharp KM, Kang MS, Timblin GA, Dempersmier J, Dempsey GE, Zushin P-JH, Benavides J, Choi C, Li CX, Jha AK, Kajimura S, Healy KE, Sul HS, Saijo K, Kumar S, Stahl A. Actomyosin-Mediated Tension Orchestrates Uncoupled Respiration in Adipose Tissues. Cell Metab. 2018; 27:602-615.
Yamaguchi H and Taouk GM. A Potential Role of YAP/TAZ in the Interplay Between Metastasis and Metabolic Alterations. Front Oncol. 2020; 10:1–16.
Zheng Y and Pan D. The Hippo Signaling Pathway in Development and Disease. Dev Cell. 2019; 50:265–282.
Toma A and Deyno S. Phytochemistry and pharmacological activities of Moringa oliefera. Int J Pharm Sci Res. 2013;1:222–231.
Tshabalala T, Ndhlala AR, Ncube B, Abdelgadir HA, Van Staden J. Potential substitution of the root with the leaf in the use of Moringa oleifera for antimicrobial, antidiabetic and antioxidant properties. S Afr J Bot. 2020; 129:106–112.
Atta AH, Mouneir SM, Nasr SM, Sedky D, Mohamed AM, Atta SA. Phytochemical studies and anti-ulcerative colitis effect of Moringa oleifera seeds and Egyptian propolis methanol extracts in a rat model. Asian Pac J Trop Biomed. 2019; 9:98–108.
Cretella ABM, Soley BS, Pawloski PL, Ruziska RM, Scharf DR, Ascari J, et al. Expanding the anti-inflammatory potential of Moringa oleifera: topical effect of seed oil on skin in flammation and hyperproliferation. J Ethnopharmacol. 2020; 254:112708.
Vinoth B, Manivasagaperumal R, Balamurugan S. Phytochemical analysis and antibacterial activity of Moringa oleifera. Int J Med Pharm Sci. 2014; 4:27–34.
Sikder K, Das N, Kesh SB, Dey S. Quercetin and β- sitosterol prevent high fat diet induced dyslipidemia and hepatotoxicity in Swiss albino mice. Indian J Exp Biol. 2014; 52:60–66.
Ohsumi Y. Historical landmarks of autophagy research. Cell Res. 2014; 24:9–23.
Liao PC, Lai MH, Hsu KP, Kuo YH, Chen J, Tsai MC, Li CX, Yin XJ, Jeyashoke N, Chao LKP. Identification of β-Sitosterol as in Vitro Anti-Inflammatory Constituent in Moringa oleifera. J Agric Food Chem. 2018; 66:10748–10759
Ogbunugafor H, Igwo-Ezikpe M, Igwilo I, Ozumba N, Adenekan S, Ugochukwu C, Onyekwelu O, Ekechi A. In vitro and In vivo Evaluation of Antioxidant Properties of Moringa Oleifera Ethanolic Leaves Extract and Effect on Serum Lipid Indices in Rat. Maced J Med Sci. 2012; 5:397-403.
Fidrianny I, Kanapa I, Singgih M. Phytochemistry and Pharmachology of Moringa Tree: An Overview. Biointerface Res Appl Chem. 2021; 11:10776–10789.
Shanmugavel G, Prabakaran K, George B. Evaluation of phytochemical constituents of Moringa oleifera (Lam.) leavescollected from Puducherry region, South India. Int J Zool Appl Biosci. 2018; 3:1–8.
Hagoel L, Vexler A, Kalich-Philosoph L, Earon G, Ron I, Shtabsky A, Marmor S, Lev-Ari S. Combined effect of Moringa oleifera and ionizing radiation on survival and metastatic activity of pancreatic cancer cells. Integr Cancer Ther. 2019;18:1–11.
Arif M, Yustisia I, Padlianah. The combination from ethanol extract of Moringa leaves (Moringa oleifera L.) and ethanol extract of papaya leaves (Carica papaya L.) slows the tumor growth in sprague dawley rats induced 7,12-dimethylbenz(a)anthracene. Med Cli Pract. 2020; 3:1–3.
Brown A, Emrani J, Mowa CN, Ahmed. Moringa oleifera and vesicular stomatitis virus : A combination approach for the treatment of cervical cancers. S Afr J Bot. 2020; 129:388–396.
Cuellar-Nuñez ML, Luzardo-Ocampo I, Campos-Vega R, Gallegos-Corona MA, González de Mejía E, Loarca-Piña G. Physicochemical and nutraceutical properties of moringa (Moringa oleifera) leaves and their effects in an in vivoAOM/DSS-induced colorectal carcinogenesis model. Food Res Int. 2018; 105:159–168.
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.