Identified Compounds from Ethyl Acetate Phase of Temu Mangga (Curcuma mangga Val.) Using LC-MS/MS and Their Potential as Anticancer Against MCF-7 Cells http://www.doi.org/10.26538/tjnpr/v6i12.7
Main Article Content
Abstract
Curcuma mangga Val. is a well-known species of the Zingiberaceae family. In previous research, acetone extract of this species was highly active in inhibiting MCF-7 cells’ proliferation (IC50 = 1.45 μg/mL), where crude acetone extract was partitioned consecutively using n-hexane, ethyl acetate (EtOAc), and methanol. The soluble components in the n-hexane phase, identified as zedoarondiol, curcumenol, curcumenone, and 13-hydroxygermacrone, are thought to inhibit MCF-7 cells’ proliferation. In contrast, the soluble compounds in the EtOAc phase have not yet been reported. Therefore, this study aims to identify the soluble compounds in the EtOAc phase of acetone extract and examine their anticancer activity toward MCF-7 cells. Fractionation and purification of the EtOAc constituents are achieved by vacuum liquid chromatography, radial chromatography, and preparative thin-layer chromatography, and the chemical structure of the isolated compounds is identified by employing liquid chromatography mass spectrometry/mass spectrometry (LC-MS/MS). Furthermore, the isolated secondary metabolites are examined against the MCF-7 cell line using a 3-(4,5-dimethylthiazol-2-il)-2,5- diphenyltetrazolium bromide (MTT) assay. By following these protocols, three fractions are obtained. LC-MS/MS spectra show that fraction 1 (α) contains an unidentified flavanone or chalcone compound, fraction 2 (β) confines zedoarofuran, and fraction 3 (γ) is a mixture of zederone, curzerenone, and zedoarofurane. Meanwhile, fractions 2 (β) and 3 (γ) are terpenoid compounds. The MTT assay shows that fraction 2 (β) contains zedoarofuran (eudesmane-type sesquiterpenoids) and is moderate at inhibiting MCF-7 cells’ proliferation (IC50 < 31.25 µg/mL). Fractions 1 and 3 are inactive with IC50 < 50 µg/mL.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Mukhlisa N, Sudibyo RS, Murwanti R. Uji sitotoksisitas dan hambatan ekspresi VEGF pada sel4t1 minyak atsiri rimpang Curcuma mangga Val. JPS. 2021; 26(2):122-130.
Hasanah SN and Widowati L. Jamu pada pasien tumor/kanker sebagai terapi komplementer. Indones J Pharm. 2016; 6(1):49-59.
Malek SNA, Lee GS, Hong SL, Yaacob H, Wahab NA, Weber JFF, Shah SAA. Phytochemical and cytotoxic investigations of Curcuma mangga rhizomes. Molecules. 2011; 16:4539-4548.
Liu Y and Nair MG. Curcuma longa and Curcuma mangga leaves exhibit functional food property. J Food Chem. 2012; 135(2):634-640.
Sudibyo RS, Taryono. Increasing Anticanker Substances and The Cytotoxicity Test on T47d Using Fertilization and Induction on Curcuma Mango Val. Jurnal Penelitian Saintek. 2020; 25(1):1-10. https://journal.uny.ac.id/index.php/saintek
Abas F, Lajis NH, Shaari K, Israf DA, Stanlas J, Yusuf UK, Raof SM. A labdane diterpene glucoside from the rhizomes of Curcuma mangga. J Nat Prod. 2005; 68(7):1090-1093.
Ganur ANA, Kurniawanti, Ilmiawati A, Rahayu DUC, Ambarsari L, Syahbirin G, Purwantiningsih. Total phenolic content and antioxidant, toxicity, and anticancer against MCF-7 breast cancer cell lines of Indonesian curcuma rhizomes extracts. IOSR J Pharm. 2022; 12(1):1-10.
Ganur ANA, Rahayu DUC, Dianhar H, Irwanto I, Sugita P. Terpenoid from Indonesian temu mangga (Curcuma mangga, Val) rhizomes and review of its anticancer towards MCF-7 breast cells. AIP Conf Proc. 2021; 2349(020044):1-7.
Purwantiningsih, Ilmiawati A, Rahayu DUC. Kajian Fitokimia Tumbuhan Zingiberaceae sebagai Antibakteri, Antioksidan, dan Sitotoksik terhadap Sel Murin Leukemia P-388 dan Sel Kanker Payudara MCF-7. Research Final Report of Higher Education Basic Research Scheme. 2021; (2021):1-14.
Haryanti S, Widiyastuti Y. Aktivitas sitotoksik pada sel MCF-7 dari tumbuhan indonesia untuk pengobatan tradisional kanker payudara. Media Litbangkes. 2017; 27(4):247-254.
Alafiatayo AA, Lai KS, Syahida A, Mahmood M, Shaharuddin NA. Phytochemical evaluation, embryotoxicity, and teratogenic effects of Curcuma longa extract on zebrafish (Danio rerio). Evid Based Complementary Altern Med. 2019; 2807207:1-10.
Fuchino H, Fukui N, Iida O, Wada H, Kawahara N. Inhibitory effect of black ginger (Kaempferia parviflora) constituents on nitric oxide production. Japanese J Food Chem Saf. 2018;25(3):152-159.
Kirana C, Jones GP, Record IR, McIntosh GH. 2007. Anticancer properties of panduratin a isolated from Boesenbergia pandurata (zingiberaceae). J Nat Med. 2007; 61:131-137.
Duong L, Mentreddy SR, Satyal R, Satyal P, Setzer WN. 2022. Essential oil chemotypes of four vietnamese curcuma species cultivated in North Alabama. Horticulturae. 2022; 8(360):1-18.
Hamdi OAA, Rahman SNSA, Awang K, Wahab NA, Looi CY, Thomas NF, Malek SNA. 2014. Cytotoxic constituents from the rhizomes of Curcuma zedoaria. Sci World J. 2014; 2014(32194):1-11.
Nam Y, Choi J, Lee JS, Seo C, Lee G, Lee Y, Kim JK, Kim P, Lim J, Choi H, Choi Y. Curcuma phaeocaulis inhibits NLRP3 inflammasome in macrophages and ameliorates nanoparticleinduced airway inflammation in mice. Molecules. 2022; 27(2101):1-12.
Zhao M, Hao M, Tong H, Su L, Fei C, Gu W, Mao J, Lu T, Mao C. Screening of blood-activating active components from Curcuma wenyujin y.h. chen et c. ling rhizome based on spectrum-effect relationship analysis and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci. 2022; 1188(123022):1-12.
Mahanta BP, Kemprai P, Bora PK, Lal M, Haldar S. Phytotoxic essential oil from black turmeric (Curcuma caesia Roxb.) rhizome: screening, efficacy, chemical basis, uptake and mode of transport. Ind Crops Prod. 2022; 180(114788):1-12.
Ray A, Mohanty S, Jena S, Sahoo A, Acharya L, Panda PC, Sial P, Dusaisamy P, Nayak S. Drying methods affects physicochemical characteristics, essenetial oil yield and volatile composition of turmeric (Curcuma longa L.). J Appl Res Med Aromat Plants. 2022; 100357:1-9.
Zohmachhuana A, Malsawmdawngliana, Lalnunmawia F, Mathipi V, Lalrinzuali K, Kumar NS. Curcuma aeruginosa roxb. Exhibits cytotoxicity in a-549 and hela cells by inducing apoptosis through caspase-dependent pathways. Biomed Pharmacother. 2022; 113039.
Damasa SO, Ayu SD, Syahbirin G, Rahayu DUC, Dianhar H, Sugita P. 2022. Secondary metabolite isolated from Indonesian white turmeric (Curcuma zedoaria) rhizomes and its potential as antibacterial agent. J Pharm Innov. 2022; 11(1):28-32.
Aryantini D, Astuti P, Yuniarti N, Wahyuono S. Extraction and Isolation of Phytochemicals from Kaempferia rotunda Linn. (White Turmeric) for Pharmacological Application: A Review. Trop J Nat Prod Res. 2022; 6(9):1359-1366.
Lee TK, Lee DH, Lee SR, Ko YJ, Kang KS, Chung SJ, Kim KH. Sesquiterpenes from Curcuma zedoaria rhizomes and their cytotoxicity against human gastric cancer AGS cells. Bioorg Chem. 2019; I87:117-122.
GLOBOCAN, [Online]. 2020 [cited 22 April 2022]. Available from https://gco.iarc.fr/today/home.
Comşa Ş, Cîmpean AM, Raica M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res. 2015; 35:3147-3154.
Gomathi AC, Rajarathinam SRX, Sadiq AM, Rajeshkumar S. 2020. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cell line. J Drug Deliv Sci Technol. 2020; 55(101376).
Cao S, Sng VHL, Wu XH, Sim KY, Tan BHK, Pereira JT, Goh SH. Novel cytotoxic polyprenylated xanthonoids from Garcinia gaudichaudii (guttiferae). Tetrahedron. 1998; 54(36):10915-10924.
Rahman SNSA, Wahab NA, Malek SNA. In vitro morphological assessment of apoptosis induced by antiproliferative constituents from the rhizomes of Curcuma zedoaria. Evid Based Complementary Altern Med. 2013; 257108:1-14.
Al-Amin M, Eltayeb NM, Khairuddean M, Salhimi SM. Bioactive chemical constituents from Curcuma caesia Roxb. rhizomes and inhibitory effect of curcuzederone on the migration of triple-negative breast cancer cell line MDA-MB-231. Nat Prod Res. 2019; 35(18):3166-3170.
Alarif WM, Al-Footy KO, Zubair MS, Ph MH, Ghandourah MA, Basaif SA, Al-Lihaibi SS, Ayyad SEN, Badria FA. The role of new eudesmane-type sesquiterpenoid and known eudesmane derivatives from the red alga Laurencia obtusa as potential antifungal-antitumour agents. Nat Prod Res. 2016; 30(10):1150-1155.
Yang H, Cho HJ, Sim SH, Chung YK, Kim DD, Sung SH, Kim J, Kim CH. Cytotoxic terpenoids from Juglans sinensis leaves and twigs. Bioorganic Med Chem Lett. 2012; 22:2079-2083.
Maldonado EM, Svensson D, Oredsson SM, Sterner O. Cytotoxic sesquiterpene lactones from Kauna lasiophthalma Griseb. Sci Pharm. 2014; 82:147-160.
Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, Long K, Yeap SK. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, of anti-angiogenesis and induction of apoptosis. Sci Rep. 2019; 9(1514):1-12.
Al Nowak J, Wambebe C, Mukonzo J, Katuura E. Cytotoxic Activity of Combining Molecular Iodine and Dihydroartemisinin with Methanol Extracts of Carica papaya Linn and Vernonia amygdalina Delile Leaves against MCF-7 and MDA-MB-231 Breast Cancer Cell Lines. Trop J Nat Prod Res. 2021; 5(3):485-493.