Antidiabetic Activity of Medicinal Plants: An Updated Overview of Streptozotocin and Alloxan-Induced Diabetic Models doi.org/10.26538/tjnpr/v6i7.3

Main Article Content

Kavya Yedelli
Ramachandran K. Pathangi

Abstract

Insulin resistance (type 2 diabetes mellitus) leads to the development of hyperglycemia. The present review was aimed at providing an overview of current traditional antidiabetic medicinal plants evaluated by streptozotocin and alloxan. A total of seventy medicinal plants were mentioned with antidiabetic activities in the streptozotocin-induced diabetic model (thirty-six), and alloxan-induced diabetic model (thirty-four). Also, the presence of active ingredients, dose, and significance of antidiabetic action of the medicinal plants were evaluated. In this review, the herbal plants for the treatment of diabetes in the majority of the plants found in Nigeria have
been highlighted, and the efficacy of the seventy herbs in the management of diabetes has been evaluated. Diabetes is treated with approximately 40% of medicinal plant leaves. Based on the findings of this review, it is possible to use herbs as adjuvant therapies in the management and treatment of diabetes. Further research into the isolation of phytochemicals and their mechanisms of action will lead to the discovery of newer antidiabetic agents.

Downloads

Download data is not yet available.

Article Details

How to Cite
Yedelli, K., & Pathangi, R. K. (2022). Antidiabetic Activity of Medicinal Plants: An Updated Overview of Streptozotocin and Alloxan-Induced Diabetic Models: doi.org/10.26538/tjnpr/v6i7.3. Tropical Journal of Natural Product Research (TJNPR), 6(7), 1047-1056. https://tjnpr.org/index.php/home/article/view/1346
Section
Articles

How to Cite

Yedelli, K., & Pathangi, R. K. (2022). Antidiabetic Activity of Medicinal Plants: An Updated Overview of Streptozotocin and Alloxan-Induced Diabetic Models: doi.org/10.26538/tjnpr/v6i7.3. Tropical Journal of Natural Product Research (TJNPR), 6(7), 1047-1056. https://tjnpr.org/index.php/home/article/view/1346

References

Knentz AJ and Nattras M. Diabetic ketoacidosis, non ketotic hyperosmolar coma and lactic acidosis. In Handbook of Diabetes. (2nd ed). Blackwell Science. 1991; 479-494p.

Kumar PJ and Clark M. Textbook of Clinical Medicine. WB Saunders, London; UK. 2002.

Day C. Traditional plant treatments for diabetes mellitus: pharmaceutical foods. Br J Nutr. 1998; 80(1):5-6.

Tabatabaei-Malazy O, Larijani B, Abdollahi M. A novel management of diabetes using strong antioxidants combination. J Med Hypotheses Ideas. 2013; 7(1):25-30.

Atlas IDS and Aarhus IDF. International Diabetes Federation, Denmark; 2021.

Brentjens R and Saltz L. Islet cell tumors of the pancreas. The medical oncologist’s perspective. Surg Clin North Am. 2001; 81:527-542.

Costa M, Bernardi J, Fiuza T, Costa L, Brandão R, Pereira Maria E. N-acetylcysteine protects memory decline induced by streptozotocin in mice". Chem Biol Interact. 2016; 253:10-17.

Bedoya FJ, Solano F, Lucas M. N-monomethyl-arginine and nicotinamide prevent streptozotocin-induced doublestrand DNA break formation in pancreatic rat islets. Experientia.1996; 52(4):344-347.

Morgan NG, Cable HC, Newcombe NR, Williams GT. Treatment of cultured pancreatic B-cells with streptozotocin induces cell death by apoptosis. Biosci Rep. 1994; 14(5):243-250.

Turk J, Corbett JA, Ramanadham S, Bohrer A, McDaniel ML. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem Biophys Res Commun. 1993; 197(3):1458-1464.

Nukatsuka M, Yoshimura Y, Nishida M, Kawada J. Importance of the concentration of ATP in rat pancreatic β cell in the mechanisam of streptozotocin-induced cytotoxicity. J Endocrinol. 1990; 127(1):161-165.

Sandler S and Swenne I. Streptozotocin, but not alloxan, induces DNA repair synthesis in mouse pancreatic islets in vitro. Diabetol. 1983; 25(5):444-447.

Halim D, Khalifa K, Awadallah R, El-Hawary Z, ElDessouky EA. Serum mineral changes in dithizone-induced diabetes before and after insulin treatment. Z Erna rang swiss. 1977; 16(1):22-26.

Epand RM, Stafford AR, Tyers M, Nieboer E. Mechanism of action of diabetogenic zinc-chelating agents. Model system studies. Mol Pharmacol. 1985; 27(3):366-374.

Lenzen S. The mechanisms of alloxan and streptozotocininduced diabetes. Diabetol. 2008; 51(2):216–226.

Dunn JS and McLetchie NG. Experimental alloxan diabetes in the rat. Lancet. 1943; 242:384-387.

Gomori G and Goldner MG. Acute nature of alloxan damage. Proc Soc Exp Biol Med. 1945; 58(3):232–233.

Goldner MG and Gomori G. Studies on the mechanism of alloxan diabetes. Endocrin. 1944; 35(4):241-248.

Cruz AB, Amatuzio DS, Grande F, Hay LJ. Effect of intraarterial insulin on tissue cholesterol and fatty acids in alloxan-diabetic dogs. Circ Res. 1961; 9(1):39-43.

Porchezhian E, Ansari SH, Shreedharan NKK. Antihyperglycemic activity of Euphrasia officinale leaves. Fitoter. 2000; 71(5):522-526.

Workineh WH, Yohannes KE, Kefyalew AG, Wubayehu K. Antidiabetic and Antihyperlipidemic Activities of the Leaf Latex Extract of Aloe megalacantha Baker (Aloaceae) in Streptozotocin-Induced Diabetic Model. Evid-Based Compl Altern Med. 2019; 2019:1-9.

Amare GG, Meharie BG, Belayneh YM. Evaluation of Antidiabetic Activity of the Leaf Latex of Aloe pulcherrima Gilbert and Sebsebe (Aloaceae). J Evid-Based Compl Altern Med. 2020; 2020:1-9.

Natarajan P, Subramanian G, Ramarajan S, Thirupathi T. Antidiabetic Activity of Borreria Hispida Linn on Streptozotocin Induced Diabetic in Albino Rats. Int J Pharm. 2019; 9(3):148-152.

Luximon-Ramma A, Bahorun T, Soobrattee MA, Aruoma OI. Antioxidant activities of phenolic, Proanthocyanidins, and flavonoid components in extracts of Cassia fistula. J Agric Food Chem. 2002; 50(18):5042-5047.

Jangir RN, and Jain GC. Evaluation of the antidiabetic activity of hydroalcoholic extract of Cassia fistula Linn. pod in streptozotocin-induced diabetic rats. Pharmacogn J. 2017; 9(5):599-606.

Altaee EH, Karim AJ, Dakheel MM. Assessment of AntiDiabetic Activity of Vinca Rosea Extracts on Induced Diabetic Mice. Indian J For Med Toxicol. 2020; 14(4):2311-2318.

Pillai JS, Ratheesh R, Nair KP, Sanal Kumar MG, Thomson RJ. Evaluation of the anti-diabetic potential of aqueous extract of Clerodendrum infortunatum L. in vivo in streptozotocin-induced diabetic Wistar rats. Plant Sci Today. 2019; 6(1):1-7.

Patra S, Bhattacharya S, Bala A, Haldar PK. Antidiabetic effect of Drymaria cordata leaf against streptozotocin– nicotinamide-induced diabetic albino rats. J Adv Pharm Technol. 2020; 11(1):44-52.

Nora AA, Ghedeir MA, Muneer MA, Munirah AA, Mohammed AY. Antidiabetic and antihyperlipidemic effect of Duvalia corderoyi in rats with streptozotocin-induced diabetes. Saudi J Biol Sci. 2020; 27(3):925-934.

Nausheen N, Muhammad Z, Mohammad N, Imran K, Nasiara K, Heba A-H. Phytochemical analysis and antidiabetic potential of Elaeagnus umbellata (Thunb.) In streptozotocin-induced diabetic rats: a pharmacological and computational approach. BMC Compl Altern Med. 2018;

(1):1-16.

Gangajala R and Swaroopa RV. Antidiabetic effect of methanolic extract of the whole plant of Lindernia ciliata (column.) Pennell. On streptozotocin-induced diabetic rats. Int J Pharm Sci. 2020; 11(2):660-668.

Badr JM, Shaala LA, Youssef DT. Loranthin: a new polyhydroxylated flavanocoumarin from Plicosepalus acacia with significant free radical scavenging and antimicrobial activity. Phytochem Lett. 2013; 6(1):113–117.

Noman OM, Mothana RA, Al-Rehaily AJ, Al Qahtani AS, Nasr FA, Khaled JM. Phytochemical analysis and antidiabetic, anti-inflammatory, and antioxidant activities of Loranthus acaciae Zucc. Grown in Saudi Arabia. Saudi Pharm J. 2019; 27(5):724-730.

Mohamed-I K El-S, Shaza Al-M, Ali El G, Amina El-S, Hassan M Al-M. Mechanism of antidiabetic effects of Plicosepalus Acaciae flower in streptozotocin-induced type 2 diabetic rats, as a complementary and alternative therapy. BMC Compl Altern Med. 2020; 20(1):290.

Azad AK, and Sulaiman WMAW. Antidiabetic effects of Phaleria macrocarpa ethanolic fruit extract in streptozotocin-induced diabetic rats. Fut J Pharm Sci. 2020; 6(1):1-12.

Shinu P, Parminder N, Mohamed AM, Jaspreet K, Bandar E Al-D, Sandhya J, Anroop BN. Mechanisms of Antidiabetic Activity of Methanolic Extract of Punica granatum Leaves in Nicotinamide/Streptozotocin-Induced Type 2 Diabetes in Rats. Plants. 2020; 9(11):1609.

Ota A and Ulrih NP. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front Pharmacol. 2017; 8:436.

Devi M, Komal S, Logeshwari B. Preliminary phytochemistry and antidiabetic activity of Portulaca grandiflora hook plant extract on streptozotocin-induced diabetes in rats. Asian J Pharm Clin Res. 2019; 12(12):87- 90.

Baset ME, Ali TI, Hanan Elshamy H, EI Sadek AM, Sami DG. Abdellatif A. Anti-diabetic effects of fenugreek Trigonella foenum-graecum A comparison between oral and intraperitoneal administration-an animal study. J Funct Foods. 2020; 1(1):1-1.

Prisilla DH, Balamurugan R, Shah HR. Antidiabetic activity of methanol extract of Acorus calamus in STZ-induced diabetic rats. Asian Pac J Trop Biomed. 2012; 2(2):941- 946.

Oyedemi SO, Adewusi EA, Aiyegoro OA, Akinpelu DA. Antidiabetic and hematological effect of aqueous extract of stem bark of Afzelia Africana (Smith) on streptozotocininduced diabetic Wistar rats. Asian Pac J Trop Biomed. 2011; 1(5):353-358.

Rajesh K, Dinesh KP, Satyendra KP, Krishnamurthy S, Siva H. Antidiabetic activity of alcoholic leaves extract of Alangium lamarckii Thwaites on streptozotocin– nicotinamide induced type 2 diabetic rats. Asian Pac J Trop Biomed. 2011; 4(11):904-909.

Kumar R, Patel DK, Prasad SK, Sairam K, Hemalatha S. Antidiabetic activity of alcoholic root extract of Caesalpinia digyna in streptozotocin-nicotinamide induced diabetic rats. Asian Pac J Trop Biomed. 2012; 2(2):S934- S940.

Sancheti S, Sancheti S, Seo SY. Antidiabetic and ant acetylcholinesterase effects of ethyl acetate fraction of Chaenomeles sinensis (Thouin) Koehne fruits in streptozotocin-induced diabetic rats. Exp Toxicol Pathol. 2013; 65(1-2):55-60.

Parminder N, Vipin S, Sunil S, Jaspreet N. Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced type-2 diabetes mellitus (T2DM) rats. J Ethnopharmacol. 2012; 142(1):65-71.

Tao Z, Guangwen S, Zhanzhan Y, Shasha M, Yin Z, Zhinan M. Antidiabetic effect of total saponins from Entada phaseoloides (L.) Merry. in type 2 diabetic rats. J Ethnopharmacol. 2012; 139(3):814-821.

Arunachalam K and Parimelazhagan T. Antidiabetic activity of Ficus amplissima Smith. bark extract in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2013; 147(2):302-310.

Ramkumar KM, Vanitha P, Uma C, Suganya N, Bhakkiyalakshmi E, Sujatha J. Antidiabetic activity of alcoholic stem extract of Gymnema montanumin streptozotocin-induced diabetic rats. Food Chem Toxicol. 2011; 49(12):3390-3394.

Togenu MFB, Austin US, Joyce AO. Antidiabetic effect of aqueous leaf extract of Heinsiacrinata on key glycolytic enzymes and glycogen in streptozotocin-induced diabetic rats. Acad J Sci Res. 2013; 1(6):109-114.

Reddy GJ, Reddy KB, Reddy GVS. Evaluation of the antidiabetic potential of Ixora pavetta streptozotocin-induced diabetic rats. Int J Pharm Pharm Sci. 2015; 7(4):230-236.

Kumar S, Kumar V, Prakash OM. Antidiabetic and hypolipidemic activities of Kigelia pinnata flowers extract in streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed. 2012; 543-546.

Gandhi GR and Sasikumar P. Antidiabetic effect of Merremia emarginata Burm. F. in streptozotocin induced diabetic rats. Asian Pac J Trop Biomed. 2012; 281-286.

Arunachalam K and Parimelazhagan T. Antidiabetic activity of aqueous root extract of Merremia tridentata (L.) Hall. f. in streptozotocin–induced–diabetic rats. Asian Pac J Trop Biomed. 2012; 5(3):175-179.

Sheng Y, Zhang S, Ma T, Zhang C, Ou X, He X, Xu W, Huang K. Mulberry leaf alleviates streptozotocin-induced diabetic rats by attenuating NEFA signaling and modulating intestinal microflora. Sci Rep. 2017; 7(1):12041.

Kumar ED and Janardhana GR. Antidiabetic activity of alcoholic stem extract of Nervilia plicata in streptozotocinnicotinamide induced type 2 diabetic rats. J Ethnopharmacol. 2011; 133(2):480-483.

Li PB, Lin WL, Wang YG, Peng W, Cai XY, Su WW. Antidiabetic activities of oligosaccharides of Ophiopogonis japonicus in experimental type 2 diabetic rats. Int J Biol Macromol. 2012; 51(5):749-755.

Zhaoa LY, Lana QJ, Huanga LJ, Ouyanga FHZ. Antidiabetic effect of a newly identified component of Opuntia dilleniid polysaccharides. Phytomed. 2011; 18(8- 9):661-668.

Mohamed EAH, Yam MF, Ang LF, Mohamed AJ, Asmawi MZ. Antidiabetic properties and mechanism of action of Orthosiphon stamineus Benth bioactive sub-fraction in streptozotocin-induced diabetic rats. J Acupunct Meridian Stud. 2013; 6(1):31-40.

Ajiboye BO, Diayi A, Agunbiade SO, Akinyemi AJ, Adewale OB, Ojo OA. The ameliorating activity of polyphenolic-rich extracts of Basella rubra L. leaves on pancreatic β-cell dysfunction in streptozotocin-induced iabetic rats. J Compl Integr. Med. 2021; 2021.

Ajiboye BO, Oyinloye BE, Essien PE, Onikanni SA, Ojo OA, Kappo AP. Ameliorative potential of Sterculia tragacantha aqueous extract on renal gene expression and biochemical parameters in streptozotocin-induced diabetic rats. J Pharm Investig. 2021; 51(1):103-13.

Hussain SN, Uzair M, Qaisar MN, Abbas K, Ashfaq K, Chaudhari BA. Assessment of anti-diabetic activity of Cassia sophera (Caesalpiniaceae). Trop J Pharm. 2018; 17(3):443-449.

Loubna AD, Souad S, Hanane R, Faissal A, Abdallah A, Khalid B, Mohamed M, Mustapha L. Antidiabetic potential of Caralluma europaea against alloxan-induced diabetes in mice. Saudi J Biol Sci. 2019; 26:1171-1178.

Ahmadi S, Ebrahimi SS, Oryan S, Rafieenia F. Blockades of ATP-sensitive potassium channels and L-type calcium channels improve analgesic effect of morphine in alloxaninduced diabetic mice. J Pathophysiol. 2012; 19:171–177.

Shubham GS, Kalyani RS, Folane PN, Khedekar SL, Sagrule SD. Antidiabetic activity of Coccintia grandis in alloxan-induced diabetic rats. Eur J Pharm Sci. 2020; 7(1):384-388.

Ayobami AL, Kade EA, Oladimeji KA, Kehinde S, Gurpreet K. Anti-diabetic Potential of Aqueous Extract of Moringa oleifera, Ocimum gratissimum, and Vernonia amygdalina in Alloxan-Induced Diabetic Rats. J Diab Clin Res. 2020; 2(3):78-85.

Khan ST, Ahmed M, Khan RA, Mushtaq N, Khan N. The anti-diabetic potential of aerial parts of Galium tricornutum (Dandy) Rubiaceae. Trop J Pharm. 2017; 16(7):1573-1578.

Baiga VP, Kumar K, Yadav S, Kumar P, Shukla D, Mani M. Evaluation of Antidiabetic Activity of Leucomeris Spectabilis Extracts in Alloxan-Induced Diabetic Rats. J Drug Deliv Ther. 2018; 8(5):273-279.

Munira S, Nesa L, Islam M, Begum Y, Rashid MA, Sarker MR, Ahmed T. Antidiabetic activity of Neolamarckia cadamba (Roxb.) Bosser flower extract in alloxan-induced diabetic rats. Clin Phyto Sci. 2020; 6(33):1-6.

Shahid S and Taj S. Antidiabetic activity of extracts of Pistachia khinjuk on alloxan monohydrate induced diabetic mice. MATEC Web Conf. 2019; 272:01006.

Vijayalakshmi K and Selvaraj CI. Evaluation of the antidiabetic potential of Sarcostemma brevistigma Wight & Arn. Using alloxan-induced diabetic murine model. Biotechnol Appl Biochem. 2019; 187(1):14-27.

Babu N and Srikanth M. Anti-diabetic activity of Sida Cordifolia. J Integr Sci. 2020; 3(1):1-7.

Asif M, Saleem M, Yousaf S, Saadullah M, Zafar M, Khan RU, Yuchi A. Antidiabetic activity of aqueous extract of Sigesbeckia orientalis (St. Paul’s Wort) in an alloxaninduced diabetes model. Braz J Pharm Sci. 2019; 55: e18408.

Godwin CA, Linus KE, Gloria AA, Ndubuisi NN, Joseph LA, Basil CE. The antidiabetic and hyperlipidaemic potential of ethanol extract of Salcia lehmbachii stem bark in alloxan-induced diabetic rats. J Basic Clin Physiol Pharm. 2019; 30(30):239-244.

Jonathan EE, Esther OA, Ibrahim AO, Osede II. Antidiabetic effects of the ethanolic root extract of Uvaria chamae P. Beauv (Annonaceae) in alloxan-induced diabetic rats: a potential alternative treatment for diabetes mellitus. Adv Pharmacol Sci. 2018; 2018:1-13.

Arun K and Virupaksha JH. Evaluation of antidiabetic activity of Zanthoxylum ovalifolium leaf extracts. Int J Pharm Pharm Sci. 2021; 13(2):56-60.

Jianfang F, Jufang F, Jun Yuanc, Nanyan Z, Bin G, Guoqiang F, Yanyang T, Yongsheng Z. Anti-Diabetic activities of Acanthopanax senticosus polysaccharide (ASP) in combination with metformin. Int J Biol Macromol. 2012; 50(3):619-623.

Prashant C, Bharat G, Ashoke KG. Antidiabetic activity of Adina cordifolia (Roxb) leaves in alloxan-induced diabetic rats. Asian Pac J Trop Biomed. 2012; 2(3):1630-1632.

Tafesse TB, Hymete A, Mekonnen Y, Tadesse M. Antidiabetic activity and phytochemical screening of extracts of the leaves of Ajuga remota Benth on alloxaninduced diabetic mice. BMC Compl Altern Med. 2017; 17(1):243.

Dinesh K, Sunil K, Sonia K, Renu A, Jyoti G. Antidiabetic activity of methanolic bark extract of Albizia odoratissima Benth. in alloxan-induced diabetic albino mice. Asian Pac J Trop Biomed. 2011; 4(11):900-903.

Olubomehin OK, Abo A, Ajaiyeoba EO. Alpha-amylase inhibitory activity of two Anthocleista species and in vivo rat model anti-diabetic activities of Anthocleista djalonensis extracts and fractions. J Ethnopharmacol. 2013; 146(3):811- 814.

Ibeh BO and Ezeaja MI. Preliminary study of antidiabetic activity of the methanolic leaf extract of Axonopus compressus (P. Beauv) in alloxan-induced diabetic rats. J Ethnopharmacol. 2011; 138(3):713-716.

Pingale R, Sharma AK, Dash GK. Antidiabetic Activity of Methanol Extract of Canthium parviflorum Lam. Leaves. Indian J Pharm Biol. 2017; 5(1):51-54.

Campos-Florian J, Bardales-Valdivia J, Caruajulca-Guevara L, Cueva-Lianos D. Anti-diabetic Effect of Coffea arabica, in Alloxan-induced Diabetic Rats. J Sci Food Agric. 2013; 25(10):772-777.

Mahendran S, Badami S, Maithili V. Evaluation of antidiabetic effect of embelin from Embelia ribes in alloxan-induced diabetes in rats. Biomed Prev Nutr. 2011; 1(1):25-31.

Kumar AY, Nandakumar K, Handral M, Talwar S, Dhayabaran D. Hypoglycaemic and anti-diabetic activity of stem bark extracts Erythrina indica in normal and alloxaninduced diabetic rats. Saudi Pharm J. 2011; 19(1):35-42.

Yakubu MT and Olalekan OB9. Effects of Aqueous Extract of Fadogia agrestis Stem in Alloxan-induced Diabetic Rats. Bangladesh J Pharmacol. 2014; 9(3):356-363.

Karthic R, Nagaraj S, Arulmurugan P, Seshadri S, Rengasamy R, Kathiravan S. Gymnema sylvestre R. Br. suspension cell extract show antidiabetic potential in Alloxan induced diabetic albino male rats. Asian Pac J Trop Biomed. 2012; 2(2):930-933.

Pandurangan A, Arshad A, Sameksha K. Blood Glucose Lowering Potential of Hamelia Patens Stem in the alloxaninduced Diabetic Rat. Indian J Pharm Edu Res. 2013; 2(2):23-26.

Campus B and Bhimber AJ. Comparative Anti-Diabetic Evaluation of Different Parts of Himalrandia tetrasperma in Alloxan Induced Diabetic in Mice. J Chem Soc Pak. 2016; 38(2):313-317.

Osadebe PO and Omeje EO. Comparative acute toxicities and immunomodulatory potentials of five Eastern Nigeria mistletoes. J Ethnopharmacol. 2009; 126(2):287-293.

Osadebe PO, Omeje EO, Nworu SC, Esimone CO, Uzor PF, David EK. Antidiabetic principles of Loranthus micranthus Linn. parasitic on Persea americana. Asian Pac J Trop Biomed. 2010; 3(8):619-623.

Akpan EJ, Okokon JE, Offong E. Antidiabetic and hypolipidemic activities of ethanolic leaf extract and fractions of Melanthera scandens. Asian Pac J Trop Biomed. 2012; 2(7):523-527.

Sikarwar MS and Patil MB. Antidiabetic activity of Pongamia pinnata leaf extracts in alloxan-induced diabetic rats. Int J Ayurv Res. 2010; 1(4):199-204.

Rastellini C, Shapiro R, Corry R, Fung JJ, Starzl TE, Rao AS. An attempt to reverse diabetes by delayed islet cell transplantation in Humans. Transplant Proc. 1997; 29(4):2238-2239.

Uwazie JN, Yakubu MT, Ashafa AO, Ajiboye TO. Identification and characterization of anti-diabetic principle in Senna alata (Linn.) flower using alloxan-induced diabetic male Wistar rats. J Ethnopharmacol. 2020; 28:261:112997.

Basiru OA, Babatunji EO, Precious EA, Oluwafemi AO. Hepatoprotective and Haematoprotective Roles of Gongronema latifolium Benth Aqueous Extract in Alloxan Induced Diabetic Rats. Biointerf Res Appl Chem. 2022; 12(1):537-546.

Ahmed I, Adeghate E, Cummings E, Sharma AK, Singh J. Beneficial effects and mechanism of action of Momordica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat. Mol Cell Biochem. 2004; 261(1):63-70.

Ribnicky DM, Kuhn P, Poulev A, Logendra S, Zuberi A. Improved absorption and bioactivity of active compounds from an anti-diabetic extract of Artemisia dracunculus. L. Int J Pharm. 2009; 370(1-2):87-92.

Platel K and Srinivasan K. Plant foods in the management of diabetes mellitus: vegetables as potential hypoglycaemic agents. Nahrung. 1997; 41(2):68-74.

Kumar S and Kumar D. Evaluation of antidiabetic activity of Euphorbia hirta Linn. In streptozotocin-induced diabetic mice. Indian J Nat Prod Resour. 2010; 1:200-203.

He CN, Wang CL, Guo SX, Yang JS, Xiao PG. Study on chemical constituents in herbs of Anoectochilus roxburghii II. Zhongguo Zhong Yao Za. 2005; 30(10):761-763.

Jung M, Park M, Lee HC, Kang YH, Kang ES. Antidiabetic agents from medicinal plants. Curr Med Chem. 2006; 13(10):1203-1218.