Effect of mixed Camellia chrysantha, Gynostemma pentaphyllum and Celastrus hindsii Extract on Atherosclerotic Rat Models doi.org/10.26538/tjnpr/v6i3.9
Main Article Content
Abstract
Atherosclerotic disease occurs due to lifestyle choices, such as being sedentary, eating fast foods, and a lack of physical exercise. Atherosclerosis has gradually become the leading cause of death worldwide. Currently, the trend of using natural herbal products to supplement and replace synthetic drugs is being considered in Vietnam. This study aims to evaluate the in vivo anti-atherosclerotic effect of a mixture extract of C. chrysantha, G. pentaphyllum, and C. hindsii in a Wistar rat model. Wistar rats were randomly assigned to 5 groups with 10 animals in each group and blood samples were obtained from rats at 0, 14, and 28 days after treatment began to examine blood lipid indicators: triglyceride (TG), total cholesterol (TC), high-density lipoproteins (HDL-C), and low-density lipoproteins (LDL-C). The results showed that a mixture of C. chrysantha, G. pentaphyllum, and C. hindsii extracts at doses of 16.8 and 33.6 g/kg/day reduced blood lipid test indexes, including triglyceride levels, total cholesterol, LDL-cholesterol, and atherogenic index. At the same time, this mixture increased the levels of HDL-cholesterol in the blood, reduced the incidence of fatty liver, and protected against atherosclerotic lesions of the abdominal aorta in the studied rats. These initial findings contribute to the search for new sources of raw materials and the development of natural products to prevent and treat atherosclerosis.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Ugovšek S and Šebeštjen M. Lipoprotein(a)-The Crossroads of Atherosclerosis, Atherothrombosis and Inflammation.
Biomolecules. 2021; 12(1):1-14.
Yeang C, Cotter B, Tsimikas S. Experimental Animal Models Evaluating the Causal Role of Lipoprotein(a) in Atherosclerosis and Aortic Stenosis. Cardiovasc Drugs Ther. 2016; 30(1):75-85.
Millar JS, Cromley DA, McCoy MG, Rader DJ, Billheimer JT. Determining hepatic triglyceride production in mice:
comparison of poloxamer 407 with Triton WR-1339. J Lipid Res. 2005; 46(9):2023-2028.
Emini VB, Perrotta P, DeMeyer GRA, Roth L, Vander DC, Martinet W, DeMeyer GRY. Animal models of atherosclerosis.
Eur J Pharmacol. 2017; 816:3-13.
Lee YT, Laxton V, Lin HY, Chan YWF, Fitzgerald SS, To TLO, Yan BP, Liu T, Tse G. Animal models of atherosclerosis.
Biomed Rep. 2017; 6(3):259-266.
Nhu DT. Methods of studying pharmacology of anti-hyperlipidemic drugs and drugs acting on atherosclerosis, in Methods of studying pharmacological effects of drugs from herbs. Science and Technics Publishing House; 2006. 131-138 p.
Ngoc TH, Van ATT, Phung NV. Hypolipidemic Effect of Extracts from Abelmoschus esculentus L. (Malvaceae) on
Tyloxapol-Induced Hyperlipidemia in Mice. Warasan Phesatchasat, 2008; 35(1-4):42-46.
Nassiri-Asl M, Zamansoltani F, Abbasi E, Daneshi MM, Zangivand AA. Effects of Urtica dioica extract on lipid profile
in hypercholesterolemic rats. Chin J Intergr Med. 2009; 7(5):428-433.
Vyas T, Nagi R, Bhatia A, Bains SK. Therapeutic effects of green tea as an antioxidant on oral health- A review. J Fam Med Prim Care. 2021; 10(11):3998-4001.
Tran DM, Nguyen TT, Hoang TS, Dang VT, Phung DT, Nguyen VT, Dao TD, Mai TL, Vu TL, Nguyen HT, Nguyen TTP, Tran VD. Golden Camellias: A Review. Arch Curr Res Int. 2019; 16(2):1-8.
Ninh T and Ninh LNH. The Yellow Camellias of the Tam Dao National Park. Int Camellia J. 2013; 4(45):122-128.
Bag S, Mondal A, Majumder A, Banik A. Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals. Food Chem. 2022; 371:131098.
Werba JP, Misaka S, Giroli MG, Shimomura K, Amato M, Simonelli N, Vigo L, Tremoli E. Update of green tea
interactions with cardiovascular drugs and putative mechanisms. J Food Drug Anal. 2018; 26(2S):S72-S77.
Bhardwaj P and Khanna D. Green tea catechins: defensive role in cardiovascular disorders. Chin J Nat Med. 2013; 11(4):345-353.
Stangl V, Lorenz M, Stangl K. The role of tea and tea flavonoids in cardiovascular health. Mol Nutr Food Res. 2006;
(2):218-228.
Moore RJ, Jackson KG, Minihane AM. Green tea (Camellia sinensis) catechins and vascular function. Br J Nutr. 2009;
(12):1790-1802.
Pham TA, Pham TK, Trinh TDT. Quantification of total saponins in Gynostemma pentaphyllum (Thunb.) Makino grown in 3 regions by photometric method. J Pharmacol. 2014; 454(2):52-56.
Li K, Ma C, Li H, Dev S, He J, Qu X. Medicinal Value and Potential Therapeutic Mechanisms of Gynostemma
pentaphyllum (Thunb.) Makino and Its Derivatives: An Overview. Curr Top Med Chem. 2019; 19(31):2855-2867.
Su C, Li N, Ren R, Wang Y, Su X, Lu F, Zong R, Yang L, Ma X. Progress in the Medicinal Value, Bioactive Compounds, and Pharmacological Activities of Gynostemma pentaphyllum. Molecules. 2021; 26(20):6249.
Norberg A, Hoa NK, Liepinsh E, Van PD, Thuan ND, Jörnvall H, Sillard R, Ostenson CG. A novel insulin-releasing substance, phanoside, from the plant Gynostemma pentaphyllum. J Biol Chem. 2004; 279(40):41361-41367.
Nguyen NH, Ha TKQ, Yang JL, Pham HTT, Oh WK. Triterpenoids from the genus Gynostemma: Chemistry and
pharmacological activities. J Ethnopharmacol. 2021; 268(4):113574.
Viet TD, Xuan TD, Van TM, Andriana Y, Rayee R, Tran HD. Comprehensive Fractionation of Antioxidants and GC-MS and ESI-MS Fingerprints of Celastrus hindsii Leaves. Med (Basel). 2019; 6(2):1-15.
Luo D, Xiong S, Li QG, Jiang L, Niu QW, He LJ, Li YL, Zhang YB, Wang GC. Terpenoids from the stems of Celastrus hindsii and their anti-RSV activities. Phytother. 2018; 130(e1-e16):118-124.
Sung TV, Cuong NH, Thuy TT, Ninh PT, Nhung LTH. Isolation and structural characterization of Phenolic glycoside
and Triterpenes in Celastrus hindsii Benth. Viet J Chem. 2008; 46(2):224-228.
Kuo YH and Kuo LM. Antitumour and anti-AIDS triterpenes from Celastrus hindsii. Phytochem. 1997; 44(7):1275-1281.
Huang HC, Shen CC, Chen CF, Wu YC, Ku YH. A novel agarofuran sesquiterpene, celahin D from Celastrus hindsii
Benth. Chem Pharm Bull. 2000; 48(7):1079-1080.
Wali JA, Jarzebska N, Raubenheimer D, Simpson SJ, Rodionov RN, O'Sullivan JF. Cardio-Metabolic Effects of High-Fat Diets and Their Underlying Mechanisms-A Narrative Review. Nutr. 2020; 12(5):1-18.
Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative Stress in Atherosclerosis. Curr Atheroscler Rep. 2017; 19(11):1-11.
Stols-Gonçalves D, Hovingh GK, Nieuwdorp M, Holleboom AG. NAFLD and Atherosclerosis: Two Sides of the Same
Dysmetabolic Coin? Trends Endocrinol Metab. 2019; 30(12):891-902.
Wójcik-Cichy K, Koślińska-Berkan E, Piekarska A. The influence of NAFLD on the risk of atherosclerosis and cardiovascular diseases. Clin Exp Hepatol. 2018; 4(1):1-6.
Cui H, Lin Y, Xie L, Zhao J. Urantide decreases hepatic steatosis in rats with experimental atherosclerosis via the
MAPK/Erk/JNK pathway. Mol Med Rep. 2021; 23(4):1-10.
Wiśniewska A, Stachowicz A, Kuś K, Ulatowska-Bialas M, Totoń-Żurańska J, Kiepura A, Stachyra K, Suski M, Gajda M, Jawień J, Olszanecki R. Inhibition of Atherosclerosis and Liver Steatosis by Agmatine in Western Diet-Fed apoE-Knockout Mice Is Associated with Decrease in Hepatic De Novo Lipogenesis and Reduction in Plasma Triglyceride/High-Density Lipoprotein Cholesterol Ratio. Int J Mol Sci. 2021; 22(19):1-13.
Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A. Foam Cells as Therapeutic Targets in
Atherosclerosis with a Focus on the Regulatory Roles of NonCoding RNAs. Int J Mol Sci. 2021; 22(5):2529.
Wang F, Zhang Z, Fang A, Jin QS, Fang DL, Liu YM, Wu JH, Tan XY, Wei YQ, Jiang CL, Song XR. Macrophage Foam
Cell-Targeting Immunization Attenuates Atherosclerosis. Front Immunol. 2019; 9:3127.
Ly TN, Shimoyamada M, Yamauchi R. Isolation and characterization of rosmarinic acid oligomers in Celastrus
hindsii Benth. leaves and their antioxidative activity. J Agric Food Chem. 2006; 54(11):3786-3793.