Synthesis, In vitro, and In silico Studies of Methyl Eugenol Derivatives for Plasmodium falciparum Inhibitor

http://www.doi.org/10.26538/tjnpr/v6i9.19

Authors

  • Lucy Arianie Department of Chemistry, Faculty of Science, Brawijaya University, Malang, Indonesia
  • Muhammad I. Supriatna Department of Chemistry, Faculty of Science, Brawijaya University, Malang, Indonesia
  • Nuryamin Kazal Department of Chemistry, Faculty of Science, Brawijaya University, Malang, Indonesia
  • Nashi Widodo Department of Biology, Faculty of Science, Brawijaya University, Malang, Indonesia
  • Warsito Warsito Department of Chemistry, Faculty of Science, Brawijaya University, Malang, Indonesia
  • Elvina D. Iftitah Department of Chemistry, Faculty of Science, Brawijaya University, Malang, Indonesia

Keywords:

Thiosemicarbazide, Plasmodium falciparum, Methyl eugenol, Isothiocyanate

Abstract

Multidrug treatment has been piloted for Plasmodium falciparum malaria infection; however, multidrug resistance requires serious attention. Therefore, new antimalarial studies have been intensively carried out, including research on new compounds containing nitrogen and sulfur atoms that are predicted as active groups against antiplasmodial. This study aimed to synthesize two compounds derived from methyl eugenol, namely (1) isothiocyanates-based methyl eugenol and (2) thiosemicarbazide-based methyl eugenol. The synthesized compounds were characterized using FTIR, LCMS-MS, dissolution test, XRD, and SEM. The synthesized compounds were also tested in vitro for Plasmodium falciparum 3D7, molecular docking, and drug-likeness. Compound (1) was synthesized using methyl eugenol and thiocyanic acid at room temperature for 24 hours. The orange-coloured powder obtained contains dimer methyl eugenol
isothiocyanate with a specific isothiocyanate wavenumber at 2055 cm-1 and molecular mass m/z 416. Compound (2) was synthesized using compound (1) and hydrazine for 10 hours. Thespecific wavenumber of (2) was identified at 1648 cm-1 (amine-free) and molecular mass of m/z 804. Compounds (1) and (2) have crystallite sizes of 5.38141 nm and 3.85276 nm, respectively. In vitro Plasmodium falciparum analysis resulted in IC50 of 0.34 µg/mL for (1) and 1.47 µg/mL for (2). Molecular docking analysis showed that (1) and (2) had binding energies of -6.0 kcal/mol and -1.2 kcal/mol. Compounds (1) and (2) had character deviations of drug-likeness. The drug formulation development is suggested to overcome the drug-likeness aspect, considering the in vitro antimalarial potentials in the two synthetic products. 

         Views | PDF Download | EPUB Download: 52 / 49 / 0

References

Odoh UE, Uzor PF, Eze CL, Akunne TC, Onyegbulam CM, Osadebe PO. Medicinal plants used by the people of Nsukka Local Government Area, south-eastern Nigeria for the treatment of malaria: An ethnobotanical survey. J Ethnopharmacol. 2018; 218(1): 1–15.

Barabadi H, Alizadeh Z, Rahimi MT, Barac A, Maraolo AE, Robertson LJ, Masjedi A, Shahrivar F, Ahmadpour E. Nanobiotechnology as an emerging approach to combat malaria: A systematic review. Nanomedicine: NBM. 2019; 18(4): 221–233.

Maier AG, Matuschewski K, Zhang M, Rug M. Plasmodium falciparum. Trends Parasitol. 2019; 35(6): 481–482.

Arianie L, Widodo, Iftitah ED, Warsito. Natural Isothiocyanate Anti-Malaria: Molecular Docking, Physicochemical, ADME, Toxicity and Synthetic Accessibility Study of Eugenol and Cinnamaldehyde. Int J Appl Pharm. 2021; 13(6): 82–88.

Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview. Int J Mol Sci. 2015; 16(12): 12791–12835.

Mehravaran A, Mirahmadi H, Mohamadi L, Dahmardeh H. Traditional herbal treatment for Plasmodium falciparum: A systematic review on traditional plants to treat malaria in Iran. Int J Psychosoc Rehabilitation. 2020; 24(5): 7469–7481.

Ikem CJ, Oli AN, Ofori-Attah E, Aning A, Regina A-O, Esimone CO. Screening of Five Herbal Formulations Sold in South-East Nigeria for Their Phytochemical Properties, in Vitro Antioxidant, Antiplasmodial and Cytotoxic Activities. Trop J Nat Prod Res. 2022; 6(1): 150–155.

Bekele D. Review on Insecticidal and Repellent Activity of Plant Products for Malaria Mosquito Control. Biomed Res Rev. 2018; 2(2): 1–7.

Luo D-Y, Yan Z-T, Che L-R, Zhu JJ, Chen B. Repellency and insecticidal activity of seven Mugwort (Artemisia argyi) essential oils against the malaria vector anopheles sinensis. Sci Rep. 2022; 12(1): 5337.

Pontes KAO, Silva LS, Santos EC, Pinheiro AS, Teixeira DE, Peruchetti DB, Silva-Aguiar RP, Wendt CHC, Miranda KR, Trop J Nat Prod Res, September 2022; 6(9): ISSN 2616-0684 (Print) ISSN 2616-0692 (Electronic) 1210 © 2022 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License Coelho-de-Souza AN, Leal-Cardoso JH, Caruso-Neves C, Pinheiro AAS. Eugenol Disrupts Plasmodium falciparum Intracellular Development During the Erythrocytic Cycle and Protects Against Cerebral Malaria. Biochim Biophys Acta -

Gen Subj. 2021; 1865(3): 129813.

Sarma R, Adhikari K, Mahanta S, Khanikor B. Combinations of Plant Essential Oil Based Terpene Compounds as Larvicidal and Adulticidal Agent against Aedes aegypti (Diptera: Culicidae). Sci Rep. 2019; 9(1): 9471.

Voris DG da R, dos Santos Dias L, Alencar Lima J, dos Santos Cople Lima K, Pereira Lima JB, dos Santos Lima AL. Evaluation of Larvicidal, Adulticidal, and Anticholinesterase Activities of Essential Oils of Illicium verum Hook. F., Pimenta dioica (l.) Merr., and Myristica Fragrans Houtt. Against Zika Virus Vectors. Environ Sci Pollut Res. 2018; 25(23): 22541– 22551.

Kelm MA, Nair MG, Schutzki RA. Mosquitocidal Compounds from Magnolia salicifolia. Int J Pharmacogn (Lisse, Neth). 1997; 35(2): 84–90.

Ronal A, Astuti FN, Pratiwi L, Prihastari L. Preliminary Study on the Potential of Topical Anaesthesia from Betel Leaf and Clove Leaf Extract. Padjadjaran J Dent. 2021; 33(3): 250–257.

Khumpirapang N, Pikulkaew S, Anuchapreeda S, Okonogi S. Anesthetic activity of plant essential oils on Cyprinus carpio (koi carp). Drug Discoveries Ther. 2018; 12(1): 21–30.

Wang Z-J, Tabakoff B, Levinson SR, Heinbockel T. Inhibition of Nav1.7 Channels by Methyl Eugenol as a Mechanism Underlying Its Antinociceptive and Anesthetic Actions. Acta Pharmacol Sin. 2015; 36(7): 791–799.

Aydın B, Barbas LAL. Sedative and anesthetic properties of essential oils and their active compounds in fish: A review. Aquaculture. 2020; 520(1): 734999.

Vural N. Chemometrics Data Analysis and Controversial Carcinogenic Effect of Ocimum basilicum L. Rich in Methyl Eugenol. Food Measure. 2021; 15(5): 4825–4837.

Park C, Kim H, Lee DW, Kim J, Choi Y. Identification of Antifungal Constituents of Essential Oils Extracted from Boesenbergia pulcherrima Against Fusarium Wilt (Fusarium oxysporum). Appl Biol Chem. 2020; 63(34): 1–8.

Rodriguez S, Pertino MW, Arcos C, Reichert L, Echeverria J, Simirgiotis M, Borquez J, Cornejo A, Areche C, Sepulveda B. Isolation, Gastroprotective Effects and Untargeted Metabolomics Analysis of Lycium minutifolium J. remy (solanaceae). Foods. 2020; 9(565): 1–12.

Valarezo E, Morocho V, Cartuche L, Chamba-Granda F, Correa-Conza M, Jaramillo-Fierro X, Meneses MA. Variability of the Chemical Composition and Bioactivity Between the Essential Oils Isolated from Male and Female Specimens of Hedyosmum racemosum (ruiz & Pav.) G. Don. Molecules. 2021; 26(4613): 1–14.

Sena-Lopes Â, Bezerra FSB, das Neves RN, de Pinho RB, Silva MT de O, Savegnago L, Collares T, Seixas F, Begnini K, Henriques JAP, Ely MR, Rufatto LC, Moura S, Barcellos T, Padilha F, Dellagostin O, Borsuk S. Chemical Composition, Immunostimulatory, Cytotoxic and Antiparasitic Activities of the Essential Oil from Brazilian Red Propolis. Chang I-F (ed.). PLoS ONE. 2018; 13(2): e0191797.

Niculau E, Ribeiro L, Ansante T, Fernandes J, Forim M, Vieira P, Vendramim J, da Silva M. Isolation of Chavibetol and Methyleugenol from Essential Oil of Pimenta pseudocaryophyllus by High Performance Liquid Chromatography. Molecules. 2018; 23(11): 2909.

Zatla AT, Mami I, Dib MEA, Sifi MEA. Efficacy of Essential Oil and Hydrosol Extract of Marrubium vulgare on Fungi Responsible for Apples Rot. Anti-Infect Agents. 2020; 18(3): 285–293.

Rahim EA, Sanda F. Synthesis and functionality of eugenolbased polyacetylenes. J Phys: Conf Ser. 2019; 1242(1): 012003.

Agustian E, Tursiloadi S, Sulaswatty A, Rinaldi N, Sudiyarmanto. One-Pot Conversion and Separation of Methyl Eugenol by Vacuum Fractionation. IOP Conf Ser: Mater Sci Eng. 2019; 494(012056): 1–7.

Kshirsagar P, Pawar D, Mourya P, Kamble O, Patil A. Isolation and Extraction of Eugenol from Cloves - a Review. World J Pharm Res. 2018; 7(5): 421–427.

Crouse BJ, Vernon EL, Hubbard BA, Kim S, Box MC, Gallardo-Williams MT. Microwave Extraction of Eugenol from Cloves: A Greener Undergraduate Experiment for the Organic Chemistry Lab. World J Chem Educ. 2019; 7(1): 21–25.

Bao H, Xu Y, Wang Y, Zhang T, Wang E, Huang X, Chen C, Liu F. Optimization of Extraction Process of Methyl Eugenol and Asarinin in Asarum with Deep Eutectic Solvent Based on the Response Surface Methodology. Mitu L (ed.). J Chem. 2021; 2021(2069986): 1–11.

Umaru IJ, Umaru KI, Umaru HA. Phytochemical Screening, Isolation, Characterization of Bioactive and Biological Activity of Bungkang, (Syzygium polyanthum) Root-Bark Essential Oil. KJFHC. 2020; 6(3): 5–21.

Frohlich PC, Santos KA, Palú F, Cardozo-Filho L, da Silva C, da Silva EA. Evaluation of the Effects of Temperature and Pressure on the Extraction of Eugenol from Clove (Syzygium aromaticum) Leaves Using Supercritical Co2. J Supercrit Fluids. 2019; 143(1): 313–320.

Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K. Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chem Rev. 2018; 118(2): 614–678.

Pedroza-Solis CD, Rivera De la Rosa J, Lucio-Ortiz CJ, De Haro Del Río DA, González-Casamachin DA, Hernández García TC, Flores Escamilla GA, Carrillo-Pedraza ES, Santos López IA, Bustos Martínez D, García-Gutiérrez DI, Sandoval Rangel L. Thermocatalytic degradation of lignin monomer coniferyl aldehyde by aluminum–boron oxide catalysts. Comptes Rendus Chimie. 2021; 24(S1): 101–117.

Acharya PT, Bhavsar ZA, Jethava DJ, Patel DB, Patel HD. A Review on Development of Bio-Active Thiosemicarbazide Derivatives: Recent Advances. J Mol Struct. 2021; 1226(Part A): 129268.

Dziduch K, Kołodziej P, Paneth A, Bogucka-Kocka A, Wujec M. Synthesis and Anthelmintic Activity of New Thiosemicarbazide Derivatives—A Preliminary Study. Molecules. 2020; 25(12): 2770.

Takahashi H, Nakamura A, Fujino N, Sawaguchi Y, Sato M, Kuda T, Kimura B. Evaluation of the Antibacterial Activity of Allyl Isothiocyanate, Clove Oil, Eugenol and Carvacrol Against Spoilage Lactic Acid Bacteria. LWT--Food Sci Technol. 2021; 145(12): 111263.

Abdel-Kader MS, Khamis EH, Foudah AI, Alqarni MH. GC Quantitative Analysis of Benzyl Isothiocyanate in Salvadora persica Roots Extract and Dental Care Herbal Products. Saudi Pharm J. 2018; 26(4): 462–466.

Dayalan Naidu S, Suzuki T, Yamamoto M, Fahey JW, Dinkova-Kostova AT. Phenethyl Isothiocyanate, a Dual Activator of Transcription Factors NRF2 and HSF1. Mol Nutr Food Res. 2018; 62(18): 1700908.

Nowicki D, Maciąg-Dorszyńska M, Bogucka K, SzalewskaPałasz A, Herman-Antosiewicz A. Various Modes of Action of Dietary Phytochemicals, Sulforaphane and Phenethyl Isothiocyanate, on Pathogenic Bacteria. Sci Rep. 2019; 9(1): 13677.

Huang L, Cai C, Dang W, Lu J, Hu G, Gu J. Propyl Isothiocyanate Induces Apoptosis in Gastric Cancer Cells by Oxidative Stress Via Glutathione Depletion. Oncol Lett. 2019; 18(9): 5490–5498.

Aboseada HA, Hassanien MM, El-Sayed IH, Saad EA. Schiff Base 4-Ethyl-1-(pyridin-2-Yl) Thiosemicarbazide up-Regulates the Antioxidant Status and Inhibits the Progression of Ehrlich Solid Tumor in Mice. Biochem Biophys Res Commun. 2021; 573(40): 42–47.

Ahmad M, Ahmed S, Swami BL, Ikram S. Preparation and Characterization of Antibacterial Thiosemicarbazide Chitosan as Efficient Cu(ii) Adsorbent. Carbohydr Polym. 2015; 132(18): 164–172.

Harikandei KB, Salehi P, Ebrahimi SN, Bararjanian M, Kaiser M, Al-Harrasi A. Synthesis, in-Vitro Antiprotozoal Activity and Molecular Docking Study of Isothiocyanate Derivatives. Bioorg Med Chem. 2020; 28(1): 115185.

Batista SA, Vandresen F, Falzirolli H, Britta E, de Oliveira DN, Catharino RR, Gonçalves MA, Ramalho TC, La Porta FA, Nakamura CV, da Silva CC. Synthesis and Comparison of Antileishmanial and Cytotoxic Activities of S-(−)-Limonene Benzaldehyde Thiosemicarbazones with Their R-(+)- Analogues. J Mol Struct. 2019; 1179(5): 252–262.

da Silva CC, Almagro V, Zukerman-Schpector J, Castellano EE, Marsaioli AJ. An Easy Route to (-)-10(R)- Isothiocyanoaromadendrane and (-)-10(S)- Isothiocyanoalloaromadendrane. J Org Chem. 1994; 59(10): 2880–2881.

Yamaguchi MU, Barbosa da Silva AP, Ueda-Nakamura T, Dias Filho BP, Conceição da Silva C, Nakamura CV. Effects of a Thiosemicarbazide Camphene Derivative on Trichophyton Mentagrophytes. Molecules. 2009; 14(5): 1796–1807.

Rodrigues BDS, de Ávila RI, Benfica PL, Bringel LP, de Oliveira CMA, Vandresen F, da Silva CC, Valadares MC. 4- Fluorobenzaldehyde limonene-based thiosemicarbazone induces apoptosis in PC-3 human prostate cancer cells. Life Sci. 2018; 203(12): 141–149.

Ilyas S, Heryanto, Abdullah B, Tahir D. X-ray diffraction analysis of nanocomposite Fe 3 O 4 /activated carbon by Williamson–Hall and size-strain plot methods. Nano-Struct Nano-Objects. 2019; 20(4): 100396.

Oluyamo SS, Adekoya MA. Characterization of cellulose nanoparticles for materials device applications and development. Materials Today: Proceedings. 2021; 38(Part 2): 595–598.

Jakubek ZJ, Chen M, Couillard M, Leng T, Liu L, Zou S, Baxa U, Clogston JD, Hamad WY, Johnston LJ. Characterization challenges for a cellulose nanocrystal reference material: dispersion and particle size distributions. J Nanopart Res. 2018; 20(98): 1–16.

Florence CC, Nonye NE, Josephine E-OO. In vitro antiplasmodial and in vivo toxicity potential of Mentha piperita and Ocimum gratissimum essential oils and their synergistic effect with conventional antimalarial drugs against Plasmodium falciparum. Int J Mosq Res. 2022; 9(1): 114–122.

Dallakyan S, Olson AJ. Small-Molecule Library Screening by Docking with Pyrx. In: Hempel JE, Williams CH, Hong CC (eds.). Chemical Biology. New York, NY: Springer New York; 2015. 243–250 p.

Saenz-Méndez P, Eriksson LA. Exploring Polypharmacology in Drug Design. In: Mavromoustakos T, Kellici TF (eds.). Rational Drug Design. New York, NY: Springer New York; 2018. 229–243 p.

Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biol Direct. 2020; 15(1): 1–12.

Li JJ. Name reactions: a collection of detailed mechanisms and synthetic applications. (5th ed.). Springer Science & Business Media; 2014. 704 p.

Nandiyanto ABD, Oktiani R, Ragadhita R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian J Sci Technol. 2019; 4(1): 97–118.

Revelou PK, Kokotou MG, Pappas CS, Constantinou-Kokotou V. Direct Determination of Total Isothiocyanate Content in

Broccoli Using Attenuated Total Reflectance Infrared Fourier Transform Spectroscopy. J Food Compos Anal. 2017; 61(Special Issue on "Bioactive Sulfur Compounds in Foods: Identification, Quantification and Health Effects"): 47–51.

Ngadiwiyana N. Polimerisasi Eugenol Dengan Katalis Asam Sulfat Pekat. J Kim Sains Apl. 2005; 8(2): 43–47.

Rahim EA. Synthesis of Soluble Novel Polyacetylenes Containing Carbamate and Eugenol Moieties. Indones J Chem. 2020; 20(4): 818–824.

Rahim E, Sanda F, Masuda T. Synthesis and Properties of Novel Eugenol-based Polymers. Polym Bull. 2004; 52(2): 93– 100.

Pouton CW. Formulation of Poorly Water-Soluble Drugs for Oral Administration: Physicochemical and Physiological Issues and the Lipid Formulation Classification System. Eur J Pharm Sci. 2006; 29(3–4): 278–287.

George M, Ghosh I. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. Eur J Pharm Sci. 2013; 48(1–2): 142–152.

Emami S, Jouyban A, Valizadeh H, Shayanfar A. Are Crystallinity Parameters Critical for Drug Solubility Prediction? J Solution Chem. 2015; 44(12): 2297–2315.

Hammoudi R, Sanon S, Mahammed MH. In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso. J Bio Env Sci. 2018; 12(1): 1–4.

Hoyer D, Boddeke HWGM. Partial agonists, full agonists, antagonists: dilemmas of definition. Trends Pharmacol Sci. 1993; 14(7): 270–275.

Lambert D. Drugs and receptors. BJA Educ. 2004; 4(6): 181– 184.

Neubig RR, Spedding M, Kenakin T, Christopoulos A. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology. Pharmacol Rev. 2003; 55(4): 597–606.

Quesne MG, Ward RA, de Visser SP. Cysteine Protease Inhibition by Nitrile-Based Inhibitors: A Computational Study. Front Chem. 2013; 1(39): 1–10.

García-Godoy MJ, López-Camacho E, García-Nieto J, Del Ser J, Nebro AJ, Aldana-Montes JF. Bio-inspired optimization for the molecular docking problem: State of the art, recent results and perspectives. Appl Soft Comput. 2019; 79(6): 30–45.

Arianie L, Hermanto FE, Iftitah ED, Warsito W, Widodo N. Novel Antimalarial Drug Screening Based on Methyl Eugenol, Cinnamaldehyde, and Thiosemicarbazone with Cysteine Protease Inhibition: In Silico Molecular Docking, Molecular Dynamics, and ADMET Studies. J Pure Appl Chem Res. 2022; 11(2): 102–112.

Daina A, Michielin O, Zoete V. Swissadme: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci Rep. 2017; 7(42717): 1–13.

Tripathi P, Ghosh S, Talapatra SN. Bioavailability prediction of phytochemicals present in Calotropis procera (Aiton) R. Br. by using Swiss-ADME tool. World Sci News. 2019; 131(5): 147– 163.

Downloads

Published

2022-09-01

How to Cite

Arianie, L., Supriatna, M. I., Kazal, N., Widodo, N., Warsito, W., & Iftitah, E. D. (2022). Synthesis, In vitro, and In silico Studies of Methyl Eugenol Derivatives for Plasmodium falciparum Inhibitor: http://www.doi.org/10.26538/tjnpr/v6i9.19. Tropical Journal of Natural Product Research (TJNPR), 6(9), 1446–1454. Retrieved from https://tjnpr.org/index.php/home/article/view/1329

Most read articles by the same author(s)

1 2 > >>