Mutation Pattern in the Receptor Binding Motif of SARS-Cov-2 Variants and the Effect on Molecular Interactions in Docked Ligand Complexes doi.org/10.26538/tjnpr/v6i8.17

Main Article Content

Israel E. Ebhohimen
Ojei H. Onyijen
Vaishali Arora
Vanisha Arora
Victoria T. Adeleke
Moses Okpeku

Abstract

The spike glycoprotein of SARS-Cov-2 is a therapeutic target for Covid-19 and mutations in the Receptor Binding Motif (RBM) may alter the binding properties of ligands proposed to inhibit viral entry. This study aimed to identify the existence of a mutation pattern in the RBMs of SARS-Cov-2 variants and study the effect on ligand binding interactions. RBM sequences were obtained using NCBI BLASTP and subjected to multiple and pairwise sequence alignment analysis. Hypothetical generations were drawn from the phylogenetic tree. The  effect  of mutation on ligand binding was studied by docking zafirlukast on selected RBMs. Molecular dynamics simulations were conducted to explain molecular interactions. The sequences at the same phylogenetic level showed higher similarity with the observed differences defined by the crystallized chain length. 6XDG_E, a leaf node sequence was 76% similar to 7NXA_E, a branch from the root, and had the highest mutation. Differences in sequence similarity across successive generations were based on mutations and crystallized chain length and the amino acid substitution is not predictable. Different bond types and binding affinities were observed as well as varying Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and Region of Gyration (RoG) values for the RBMs in different variants. The RMSD, RMSF, and RoG did not differ significantly in the bound and free states of RBM from specific variants suggesting that the observed differences are attributable to amino acid substitutions. This information is crucial for drug development intended to block SARS-Cov-2 entry.

Downloads

Download data is not yet available.

Article Details

How to Cite
E. Ebhohimen, I., H. Onyijen, O., Arora, V., Arora, V., T. Adeleke, V., & Okpeku, M. (2022). Mutation Pattern in the Receptor Binding Motif of SARS-Cov-2 Variants and the Effect on Molecular Interactions in Docked Ligand Complexes: doi.org/10.26538/tjnpr/v6i8.17. Tropical Journal of Natural Product Research (TJNPR), 6(8), 1262-1267. https://tjnpr.org/index.php/home/article/view/1299
Section
Articles

How to Cite

E. Ebhohimen, I., H. Onyijen, O., Arora, V., Arora, V., T. Adeleke, V., & Okpeku, M. (2022). Mutation Pattern in the Receptor Binding Motif of SARS-Cov-2 Variants and the Effect on Molecular Interactions in Docked Ligand Complexes: doi.org/10.26538/tjnpr/v6i8.17. Tropical Journal of Natural Product Research (TJNPR), 6(8), 1262-1267. https://tjnpr.org/index.php/home/article/view/1299

References

Onyijen OH, Hamadani A, Awojide S, Ebhohimen IE. Prediction of deaths from Covid-19 in Nigeria using various machine learning algorithms. SAU Sci-Tech J. 2021; 6(1):109-117. https://www.journals.sau.edu.ng/index.php/sjbas/article/view/ 491/352

Palacios Cruz M, Santos E, Velázquez Cervantes MA, León Juárez M. COVID-19, a worldwide public health emergency. Rev Clin Esp. 2021; 221(1):55-61.

Nitulescu, G. M., Paunescu, H., Moschos, S. A., Petrakis, D., Nitulescu, G., Ion, G. N. D., Spandidos, D. A., Nikolouzakis,T. K., Drakoulis, N., Tsatsakis, A. Comprehensive analysis of drugs to treat SARS-CoV-2 infection: Mechanistic insights into current COVID-19 therapies (Review). Int J Mol Med. 2020; 46(2):467-488.

Ramírez-Salinas GL, Martínez-Archundia M, Correa-Basurto J, García-Machorro J. Repositioning of ligands that target the spike glycoprotein as potential drugs for sars-cov-2 in an in silico study. Molecules. 2020;25(23).

Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, Silacci-Fregni C, Pinto D, Rosen LE, Bowen JE, Acton OJ, Jaconi S, Guarino B, Minola A, Zatta F, Sprugasci N, Bassi J, Peter A, De Marco A, Nix JC, Mele F, Jovic S, Rodriguez BF, Gupta SV, Jin F, Piumatti G, Lo Presti G, Pellanda AF, Biggiogero M, Tarkowski M, Pizzuto MS, Cameroni E, Havenar-Daughton C, Smithey M, Hong D, Lepori V, Albanese E, Ceschi A, Bernasconi E, Elzi L, Ferrari P, Garzoni C, Riva A, Snell G, Sallusto F, Fink K, Virgin HW, Lanzavecchia A, Corti D, Veesler D. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High- Resolution Serology. Cell. 2020; 183(4):1024-1042.e21.

Omotuyi IO, Nash O, Ajiboye OB, Iwegbulam CG, Oyinloye EB, Oyedeji A, Kashim ZA, Okaiyeto K. Atomistic simulation reveals structural mechanisms underlying D614G spike glycoprotein-enhanced fitness in SARS-COV-2. J Comput Chem. 2020;41(24):2158-2161.

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281- 292.e6.

Wan S, Kumar D, Ilyin V, Ussama Al H, Gulab S, Alexander K, Peter VC. The effect of protein mutations on drug binding suggests ensuing personalised drug selection. Sci Rep. 2021;11:1-10.

Domingo E and Perales C. Viral quasispecies. PLoS Genet. 2019; 15(10):1-20.

Smith EC, Sexton NR, Denison MR. Thinking Outside the Triangle : Replication Fidelity of the Largest RNA Viruses. Annu Rev Virol. 2014; 1:111-132.

Jácome R, Vidal YL, León SP De, Darwin C. Are RNA Viruses Candidate Agents for the Next Global Pandemic ? A Review. 2017; 58(3):343-358.

Nag A, Paul S, Banerjee R, Kundu R. In silico study of some selective phytochemicals against a hypothetical SARS-CoV-2 spike RBD using molecular docking tools. Comput Biol Med.2021;137(August):104818.

Zhang Z, Miteva MA, Wang L, Alexov E. Analyzing effects of naturally occurring missense mutations. Comput Math Methods Med. 2012; 2012:1-15.

Harvey WT, Carabelli AM, Jackson B, Ravindra KG, Emma CT, Ewan HM, Catherine L, Richard R, Andrew R, Sharon PJ, David RL. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021; 19(7):409-424.

Dejnirattisai W, Zhou D, Supasa P, Liu C, Mentzer AJ, Ginn, HM, Zhao Y, Duyvesteyn HME, Tuekprakhon A, Nutalai R, Wang B, López-Camacho C, Slon-Campos J, Walter TS, Skelly D, Costa Clemens SM, Naveca FG, Nascimento V, Nascimento F, Fernandes da Costa C, Resende PC, Pauvolid- Correa A, Siqueira MM, Dold C, Levin R, Dong T, Pollard AJ, Knight JC, Crook D, Lambe T, Clutterbuck E, Bibi S, Flaxman A, Bittaye M, Belij-Rammerstorfer S, Gilbert SC, Carroll MW, Klenerman P, Barnes E, Dunachie S, Paterson NG, Williams MA, Hall DA, Hulswit JG, Bowden TA, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell. 2021; 184(11):2939-2954.e9.

Okonechnikov K, Golosova O, Fursov M, Varlamov A, Vaskin Y, Efremov I, German Grehov OG, Kandrov D, Rasputin K, Syabro M, Tleukenov T. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012; 28(8):1166-1167.

Madlala T, Adeleke VT, Fatoba AJ, Okpeku M, Adeniyi AA, Adeleke MA. Designing multiepitope-based vaccine against Eimeria from immune mapped protein 1 (IMP-1) antigen using immunoinformatic approach. Sci Rep. 2021; 11(1):1-18.

Domingo E, Garc C, Lobo-vega R. Proofreading-Repair Activities in RNA Virus Genetics. Viruses. 2021; 13(1882):1- 15.

Dixit A, Torkamani A, Schork NJ, Verkhivker G. Computational modeling of structurally conserved cancer mutations in the RET and MET kinases: The impact on protein structure, dynamics, and stability. Biophys J. 2009; 96(3):858-874.

Teng S, Madej T, Panchenko A, Alexov E. Modeling effects of human single nucleotide polymorphisms on protein-protein interactions. Biophys J. 2009; 96(6):2178-2188.

Zhang Z, Teng S, Wang L, Schwartz CE, Alexov E. Computational analysis of missense mutations causing Snyder-Robinson syndrome. Hum Mutat. 2010; 31(9):1043- 1049.

Zhang Z, Norris J, Schwartz C, Alexov E. In silico and in vitro investigations of the mutability of disease-causing missense mutation sites in spermine synthase. PLoS One. 2011; 6(5):1-10.

Salama MA, Hassanien AE, Mostafa A. The prediction of virus mutation using neural networks and rough set techniques. EURASIP J Bioinforma Syst Biol. Published online 2016.

Kawasaki Y and Freire E. Finding a better path to drug selectivity. Drug Discov Today. 2011; 16(21-22):985-990.

Dehury B, Raina V, Misra N, Suar M. Effect of mutation on structure , function and dynamics of receptor binding domain of human SARS-CoV-2 with host cell receptor ACE2 : a molecular dynamics simulations study. J Biomol Struct Dyn. Published online 2020: 1-15.

https://doi.org/10.1080/07391102.2020.1802348