Botanical and Bio-active Markers of Nigerian Bitter Honey


  • Bayo O. Adeoye Department of Chemical Pathology, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria
  • Abolape A. Iyanda Department of Chemical Pathology, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria
  • Michael O. Daniyan Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
  • Ayodeji D. Adeoye Department of Physiology, Benjamin S. Carson (Snr.) School of Basic Medical Sciences, Babcock University, Ilisan-Remo, Ogun State, Nigeria.
  • Ayodeji M. Oyerinde Department of Forestry and Wood Technology, Federal University of Technology Akure (FUTA), Ondo State, Nigeria
  • Goodness O. Olatinwo Department of Physiology, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria


Mineral element, Proximate composition, Palynology, Phytochemicals, Bitter honey


Honey is a central medium wherein plant-based chemicals are expressed. Its pharmacological value usually varies from one vegetal origin to another. The botanical features of the Nigerian bitter honey sample are an enigma. This study aimed at characterizing the actual botanical source of Nigerian bitter honey to establish a relationship between the plant precursor of its bioactive components and potential health benefit or otherwise. Bitter honey was harvested in August, 2018. Melissopalynology analysis was done via acetolysis and microscopic assessment. Phytochemicals, proximate compositions were determined using standard methods. Atomic absorption spectrophotometry (AAS) was used to analyze calcium, zinc, iron, and phosphorus while potassium and sodium were analysed using flame photometery. All data were analyzed using one-way analysis of variance (ANOVA) on Graph Pad Prism version
5.03. Pollen samples of medicinal plants such as Elaeis guineensis, Irvingia gabonensis, Chromolaena odorata, Blighia sapida, Canavalia ensiformis e.t.c were recovered from the bitter honey (BH). Alkaloid is the most abundant phytochemical and may be a determinant of
its predominant therapeutic significance. The BH contained moisture (15.53 ± 0.22), ash (0.86 ± 0.02), protein (5.95 ± 0.02), carbohydrate (77.66 ± 0.23), energy (334.44 ± 0.80), specific gravity (1.43 ± 0.0007) and pH (3.38 ± 0.0033). Calcium was the most abundant mineral,
followed by potassium, sodium, phosphorus, ron, and Zinc. The bitter honey used for this study is multi-floral. The botanical source of the bitter honey suggests that the bitter honey is a promising new source of essential nutraceuticals which may be relevant in modulating various disease pathways. 

Author Biography

Bayo O. Adeoye, Department of Chemical Pathology, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Oyo State, Nigeria

Department of Biochemistry, Benjamin S. Carson (Snr.) School of Basic Medical Sciences, Babcock University, Ilisan-Remo, Ogun State, Nigeria.


Czipa N., Phillips C. J. and Kovács B. “Composition of acacia honey following processing, storage, and adulteration. J Food Sci Technol. 2019; 56(3):1245–1255.

Aronne G., Giovanetti M. Sacchi R., and De Micco V. “From Flower to Honey Bouquet: Possible Markers for the Botanical Origin of Robinia Honey,” The Sci. World J. 2014; 14

Valdés-Silverio LA, Gabriel I, García-Tenesaca M, Jonathan P, Narváez-Narváez DA, Rojas-Carrillo M, Tejera E, Beltrán-Ayala P, Giampieri F, Alvarez-Suarez JM. Physicochemical parameters, chemical composition, antioxidant capacity, microbial contamination and antimicrobial activity of Eucalyptus honey from the Andean region of Ecuado. J. Apic. Res. 2019; 57(3), 382–394.

Hamidah S, Arifin YF, Suhartono E, Satriadi T, and Burhanuddin V, The Quality of Bitter Honey From Sungkai Flower (Peronema canescens) Compared With other Kinds of Honey. Acad. Res. Int. 2019; 10: 3.

Gami R and Dhakal P. Mad Honey Poisoning: A Review. J. Clin. Toxicol., 2017; 7 :1.

Gismondi A. Rossi SD, Canuti L, Novelli S, Di Marco G, Fattorini L, Canini A. From Robinia pseudoacacia L. nectar to Acacia monofloral honey: biochemical changes and variation of biological properties. J. Sci. Food Agric. 2018; 98:11, 4312– 4322.

Otmani I, Abdennour C, Dridi A, Kahalerras L, Halima-Salem A. Characteristics of the bitter and sweet honey from Algeria Mediterranean coast. Vet. World. 2019; 12: (4)551–557.

Amabye TG,.Phytochemical and biochemical composition of wild honey, a case study in Eastern zone areas in Tigray Ethiopia - MedCrave online. 2017;4(3):88‒94.

Bt Hj Idrus R, Sainik NAV, Nordin A, Saim AB, Sulaiman N, Cardioprotective Effects of Honey and Its Constituent: An Evidence-Based Review of Laboratory Studies and Clinical Trials. Int. J. Environ. Res. Public. Health, 2020; 17:3613.

Tatli O. The Black sea’s poison; Mad honey. J Anal Res Clin Med. 2017; 5(1):1-3.

Cakici O. Mad Honey: Is It Useful or Dangerous. Immunother.Res. J. 2017; 1:1-5.

Enginyurt O, Cakir L, Karatas A, Cankaya S, Kaya Y, Tugcu H, Iscanli DM, Cankaya N, Yarilgac S. Role of pure honey in the treatment of diabetes mellitus. Biomed. Res. 2017; 28(7):3305- 3312.

Abdulrhman M. Honey as a Sole Treatment of Type 2 Diabetes Mellitus. Endocrinol. Metab. Syndr. 2016; 05.

Bahrami M, Ataie-Jafari A, Hosseini S, Foruzanfar M, Rahmani M, Pajouhi M. Effects of natural honey consumption in diabetic patients: An 8-week randomized clinical trial. Int. J. Food Sci. Nutr 2009; 60:618–26.

Ebenezer I.O and Olugbenga MT. Pollen Characterisation of Honey Samples from North Central Nigeria. Science Alert. 2010.

Adeniyi KA, Olayemi IK, Shittu KO, Busari MB, Mohammed S. S, Bashir L, Yusuf RS. Comparative Phytochemical and Antinutritional Constituents of Nigeria Sweet And Bitter Honey Varieties. World J. Pharm. Res 2016; 5(3):255–267.

Official methods of analysis of AOAC International. 2000.

Moniruzzaman M, Chowdhury MAZ, Rahman MA, Sulaiman SA, Gan SH. Determination of Mineral, Trace Element, and Pesticide Levels in Honey Samples Originating from Different Regions of Malaysia Compared to Manuka Honey. BioMed Res. Int.2014, 359890:1-10.

Adeonipekun PA, Adeniyi TA, Eden D, Antimicrobial Properties and Melissopalynology, Proximate and Elemental Analyses of Honey Samples from Three Different Ecozones in Nigeria. Not. Sci. Biol. 2016; 8:3, 326–333.

Selvaraju K, Vikram P, Soon JM, Krishnan KT, Mohammed A, Melissopalynological, physicochemical and antioxidant properties of honey from West Coast of Malaysia. J. Food Sci. Technol. 2019; 56(5):2508–2521.

Azonwade FE, Paraïso A, Tossou MG, Sina H, Kelomey AE, Chabi-Sika K, Baba-Moussa L. Pollen Analysis of the Honeys Samples Produced in the Three Phyto-geographical Zones of Benin. Eur Sci J ESJ. 2017;13(18):528-528.

Judith AI. Evaluation Of Honey From Some States In Nigeria By The Determination Of Pollen Spectra, Physico-Chemical Parameters, Anti-Bacterial Activity, And Consumers’ Acceptance. Ph.D thesis, 2014.

Okpashi V. Assessment of Lipid Profile Indices of AlloxanInduced Diabetic Rats Using Irvingia gabonensis Seeds Extracts. Transl. Biomed. 2017; 8:128.

Olorundare O, Adeneye A, Akinsola A, Kolo P, Agede O, Soyemi S, Mgbehoma A, Okoye I, Ralph Albrecht R, Mukhtar H. Irvingia gabonensis Seed Extract: An Effective Attenuator of Doxorubicin-Mediated Cardiotoxicity in Wistar Rats. Oxid. Med. Cell. Longev. 2020; 1602816, 1-14

Ewere EG, Okolie NP, Eze GI, Jegede DA. Irvingia gabonensis Leaves Mitigate Arsenic-Induced Renal Toxicity In Wistar Rats,” Asian J. Biomed. Pharm. Sci.2019; 9(68):17–25.

Obianime W. and Fidelia U. Effects of aqueous extracts of Irvingia gabonensis seeds on the hormonal parameters of male guinea pigs. Asian Pac. J. Trop. Med. 2010; 3:200–204.

Oben J. Method and composition using Irvinga gabonensis for reducing Bodyweight. US Patent 2009/0226553 A1.

Adeoye BO, Iyanda AA, Ekundina VO, Adeoye AD, Abijo AZ Akin-Akanbi AF. Ameliorative Effects of Nigerian Bitter Honey on Streptozotocin - Induced Hepatorenal Damage in Wistar Rats. J. Krishna Inst. Med. Sci. Univ. 2022; 11(1):65-76.

Omonije OO, Saidu AN, Muhammad HL. Anti-diabetic activities of Chromolaena odorata methanol root extract and its attenuation effect on diabetic induced hepatorenal impairments in rats. Clin. Phytoscience. 2019; 5:1-23.

Parikipandla S, Varma Y, Pulla Reddy N, Gupta G, Karnati R. Anti-inflammatory and Anti-proliferative Properties of Chromolaena odorata Leaf Extracts in Normal and Skin-Cancer Cell Lines. J. Herbs Spices Med. Plants, 2014; 20.

Adedapo A, Oyagbemi A, Fagbohun O, Omobowale T, Yakubu M. Evaluation of the anticancer properties of the methanol leaf extract of Chromolaena odorata on HT-29 cell line. J. Pharmacogn. Phytochem. 2016; 52:52–57.

Sirinthipaporn A and Jiraungkoorskul W. Wound Healing Property Review of Siam Weed, Chromolaena odorata. Pharmacogn. Rev. 2017; 11:21:35–38.

Otegbade OO, Ojo JA, Adefokun DI, Abiodun OO, Thomas BN, Ojurongbe O. Ethanol Extract of Blighia sapida Stem Bark Show Remarkable Prophylactic Activity in Experimental Plasmodium berghei-Infected Mice. Drug Target Insights, 2017; 11:1-8.

Olowofolahan A. Effect of Methanol Leaf Extract of Blighia sapida on Mitochondrial Membrane Permeability Transition Pore Opening and Blood Glucose Levels in Normal and Streptozotocin-Induced Diabetic Rats. Biomed. J. Sci. Tech. Res. 2019; 19:1.

Joshna K, Gopal V, Kavitha B, Phytochemical Screening, Physicochemical Properties and Total Phenolic Content of Bitter Honey Samples. Int. Res. J. Pharm. 2015; 10:121–125.

Jibril FI, Hilmi ABM, Manivannan L. Isolation and characterization of polyphenols in natural honey for the treatment of human diseases. Bull. Natl. Res. Cent. 2019;43:47.

Kaur R, Kapoor K, Kaur H. Plants as a source of anticancer agents. J Nat Prod Plant Resour, 2010; 2(5):158-189

Hussain G. Rasul A, Anwar H, Aziz N, Razzaq A, Wei W, Ali M, Li J, Li X. Role of Plant-Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders. Int. J. Biol. Sci. 2018; 14(3): 341-357.

Kambai. Proximate and Mineral Elements Composition of Honey from Selected Hives in Jos Metropolis, Nigeria. IOSR J. of Environ.l Sci. Toxicol and Food Tech. 2015; 9(9):94-98.

Hazali N, Kharsa BE, Ibrahim M, Masri M, Anuar MN, Azoddein AAM. Proximate composition of Malaysian Trigona and Tualang Bee Honey. IIUM Med. J. Malays 2016; 15:1

Wasagu R, Shehu S, Mode Y. Comparative proximate composition and antioxidant vitamins contents of two honey varieties (light amber and dark amber) from Sokoto State, Nigeria. Bayero J. Pure Appl. Sci.2014; 6(2):118-120.

El-Sohaimy S, Masry S, Shehata M. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015; 60

Codex, “Standards | Codexalimentarius FAO-WHO. 2001. 44. Oyeyemi SD, Kayode J, Owolabi MO. Comparative Nutritional Studies on Honey Samples in Ado Ekiti, Ekiti State, Nigeria". Donnish J. Medicinal Plant Res. 2015; 2(2):016-020.

Wong P, Hii S, Koh C, Moh T, Gindi S. Chemical Analysis on the Honey of Heterotrigona I mtama and Tetrigona binghamifrom Sarawak, Malaysia, Sains Malays. 2019; 48(80):1635–1642

Adeniyi KA, Daudu OAY, Abubakar A, Ismail AD, Busari MB, Abdulsalami H, Oyibo-Usman KA. Comparative Analysis of the Proximate and Nutritional Compositions of Nigerian Bitter and Sweet Honey from Apis mellifera. International J. Scientific Res. Publications. 2014; 4:11.

Obiegbuna J, Osajiele B, Ishiwu C. Quality Evaluation of Awka Market Honey and Honey from Beekeepers in Two Floral Regions of Anambra State, Nigeria. Am. J. Food Sci. Technol. 2017; 5: 149–155.

Abu Bakar MF, Sanusi S, Abu Bakar F, Cong O, Mian Z. Physicochemical and Antioxidant Potential of Raw Unprocessed Honey From Malaysian Stingless Bees. Pak. J. Nutr. 2017; 16: 888–894.

Adeoye BO, Iyanda AA, Oyerinde AM, Oyeleke IO, Fadeyi BO. Inhibitory Effects of Nigerian Sweet and Bitter Honey on Pancreatic Alpha Amylase Activity. Nig. J. Nutr. Sci. 2022; 43 (2):19-24.

Kędzierska-Matysek M, Florek M, Teter A, Barłowska J, Litwińczuk Z. Concentration of Minerals in Nectar Honeys from Direct Sale and Retail in Poland. Biol. Trace Elem. Res. 2018; 186:579–588.

Zhao Y, Peng. G, Fang S, Qiang Li, Jing C, Hao Y, Li L, Xing W, Hongbo H, Zongshi L, Xiao W, Bin W, Yuanting C, Shiqiang X, Qianhui S., Aimin X., Yu H., Daoyan L., Zhiming Z. “Sodium Intake Regulates Glucose Homeostasis through the PPARδ/Adiponectin-Mediated SGLT2 Pathway,” Cell Metab. 2016; 23(4);699-711.

Hassan LG, Bagudo BU, Aliero AA, Umar KJ, Sani NA. Evaluation of Nutrient and Anti-nutrient Contents of Parkia biglobosa (L.) Flower. Niger. J. Basic Appl. Sci. 2011; 19:1.

Igbang OJ, Abang O, Eneji. Selected Antinutrients and Proximate Compositions of Honey Sample Collected from Biase, Southern Senatorial District of Cross River State, Nigeria. Biochem. Pharmacol. 2018; 7:4.

Simeonova Fina P, Lawrence F, Hydrogen cyanide and cyanides: human health aspects. World Health Organization International Programme on Chemical Safety. (2004).

Ehigie AF. Abdulrasak MA, Ojeniyi FD, Ehigie OL. Kinetic properties of Rhodanese from African locust bean seeds (Parkia biglobosa). Asian J. Biomed. Pharm. Sci. 2019; 9:67.

Urbano G., López-Jurado M., Aranda P., Vidal-Valverde C., Tenorio E and Porres J. The role of phytic acid in legumes: Antinutrient or beneficial function? J. Physiol. Biochem. 2000; 56(3):283-294.

Bhowmik A, Ojha D, Goswami D, Das R, Chandra NS, Chatterjee NK, Chakravarty A, Chakravarty S, Chattopadhyay D. Inositol Hexa phosphoric acid (phytic acid), nutraceuticals, attenuates iron-induced oxidative stress and alleviates liver injury in iron overloaded mice. Biomed. Pharmacother. 2017; 87:443–450.

Sanchis P, Rosmeri R, Francisco B, Regina F, Miquel A, Bauza C, Grases F, Masmiquel L, Phytate Decreases Formation of Advanced Glycation End-Products in Patients with Type II Diabetes: Randomized Crossover Trial. Sci. Rep. 2018; l:8,

Abdulwaliyu I, Arekemase S, Adudu J, Batari M, Okoduwa SI R. Investigation of the Medicinal Significance of Phytic Acid as an Indispensable Anti-Nutrient in Diseases. Clin. Nutr. 2019;28. doi: 10.1016/j.yclnex.2019.10.002.




How to Cite

Adeoye, B. O., Iyanda, A. A., Daniyan, M. O., Adeoye, A. D., Oyerinde, A. M., & Olatinwo, G. O. (2022). Botanical and Bio-active Markers of Nigerian Bitter Honey: Tropical Journal of Natural Product Research (TJNPR), 6(11), 1848–1853. Retrieved from