BRAF Inhibitors in Carcinogenesis and their Clinical Implications: A Review http://www.doi.org/10.26538/tjnpr/v6i11.2
Main Article Content
Abstract
Mutant BRAF is a silent activator and driver of carcinogenesis. This gene is less predominant compared to frequently mutated genes implicated in cancer development. However, its occurrence in cancer has been attributed to aggressive oncogenic growth following their role in activating key oncogenic pathways, BRAF/MEK/ERK and PI3K/AKT/MTOR pathways which play crucial roles in carcinogenesis. BRAF can self-activate and drive cancer growth as a single monomer or as a dimer independent of RAS activation. A complete blockade in oncogenic BRAF will serve as a target for the development of potential therapeutic agents with no side effects. The use of BRAF inhibitors in targeting oncogenic signaling pathways has however proven inefficient due to side effects, drug resistance and relapse of the disease. The current treatment in targeting BRAF-driven oncogenesis involve the combination of BRAF inhibitors, MEK inhibitors, and immunotherapy. Resistance to BRAF inhibitors have been a serious challenge to the treatment of BRAF-linked carcinogenesis. Although, current research is targeting the use of immunotherapy as a single therapy. Other therapies with ongoing research include the use of nanotechnology for effective drug targeting and delivery at a high concentration; as well as ongoing pre-clinical trials to overcome BRAF resistance to treatment which include pre-mRNA splicing, BCL2 inhibitors, tubulin inhibitors, mitochondrial-targeted agents, polo-like kinase inhibitors and many others. This review discussed different treatment
strategies for mutant BRAF, their mode of action and the specific cancers treated as well as current trends for mutant BRAF induced cancer.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. Canc Cell 2004; 6:313–19.
Eldrige L. What are oncogenes and protooncogenes? Verywell health 2020. Available from https://www.verywellhealth.com/oncogenes-types-and-role-incancer-4178292
Ascierto PA, Kirkwood JM, Grob JJ, Simeone E, Grimaldi AM, Maio M, Palmieri G, Testori A, Marincola FM, Mozzillo N. Therole of BRAF V600 mutation in melanoma. J Trans Med 2012; 10:85.
Schirripa M, Biason P, Lonardi S, Pella N, Pino MS, Urbano F, Antoniotti C, Cremolini C, Corallo S, Pietrantonio F, Gelsomino F, Cascinu S, Orlandi A, Munari G, Malapelle U, Saggio S, Fontanini G, Rugge M, Mescoli C, Lazzi S, Bonetti LR, Lanza G, Dei Tos AP, De Maglio G, Martini M, Bergamo F, Zagonel V, Loupakis F, Fassan M. Class 1, 2, and 3 BRAF -Mutated Metastatic Colorectal Cancer: A Detailed Clinical, Pathologic,
and Molecular Characterization. Clin Cancer Res 2019; 25:3954– 61.
Kong BY, Carlino MS, Menzies AM. Biology and treatment of BRAF mutant metastatic melanoma. Melan Manag 2016; 3:33– 45.
Ye P, Cai P, Xie J, Zhang J. Reliability of BRAF mutationdetection using plasma sample: A systematic review and metaanalysis. Med 2021; 100:e28382.
Liu Y, Gray NS. Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2006; 2:358-64.
Takeda H, Sunakawa Y. Management of BRAF Gene Alterations in Metastatic Colorectal Cancer: From Current Therapeutic Strategies to Future Perspectives. Front Oncol 2021; 11:602194.
Grassi E, Corbelli J, Papiani G, Barbera MA, Gazzaneo F, Tamberi S. Current Therapeutic Strategies in BRAF-Mutant Metastatic Colorectal Cancer. Front Oncol 2021; 11:601722.
Menzer C, Menzies AM, Carlino MS, Reijers I, Groen EJ, Eigentler T, de Groot JM, van der Veldt A, Johnson DB, Meiss F, Schlaak M, Schilling B, Westgeest HM, Gutzmer R, Pfohler C, Meier F, Zimmer L, Suijkerbuijk KP, Haalck T, Thoms K, Herbschleb K, Leichsenring J, Menzer A, Kopp-Schneider A, Long GV, Kefford R, Enk A, Blank CU, Hassel JC. Targeted therapy in advanced melanoma with rare BRAF mutations. J Clin Oncol 2019; 37:3142–51.
Zaman A, Wu W, Bivona TG. Targeting Oncogenic BRAF: Past, Present, and Future. Canc 2019; 11:1197.
Savoia P, Fava P, Casoni F, Cremona O. Targeting the ERK signaling pathway in melanoma. Int J Mol Sci 2019; 20(6):E1483.
Gentilcore G, Madonna G, Mozzillo N, Ribas A, Cossu A,Palmieri G, Ascierto, PA. Effect of dabrafenib on melanoma cell lines harbouring the BRAF(V600D/R) mutations. BMC Canc. 2013; 13:17.
Rheault TR, Stellwagen JC, Adjabeng GM, Hornberger KR, Petrov KG, Waterson AG, Dickerson SH, Mook RA, Laquerre SG, King AJ, Rossanese OW, Arnone MR, Smitheman KN, Kane-Carson LS, Han C, Moorthy GS, Moss KG, Uehling DE. Discovery of dabrafenib: A selective inhibitor of Raf kinases with antitumor activity against B-Raf-driven tumors. ACS Med Chem Lett. 2013; 4(3):358–62.
Yang H, Higgins B, Kolinsky K, Packman K, Go Z, Iyer, R., Kolis S, Zhao S, Lee R, Grippo JF, Schostack K, Simcox ME, Heimbrook D, Bollag G, Su F. RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Canc Res. 2010; 70(13):5518–27.
King AJ, Arnone MR, Bleam MR, Moss KG, Yang J, Fedorowicz KE, Smitheman KN, Erhardt JA, Hughes-Earle A, Kane-Carson LS, Sinnamon RH, Qi H, Rheault TR, Uehling DE, Laquerre SG. Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while
BRAF/MEK tool combination reduced skin lesions. PLoS ONE 2013; 8(7):e67583.
Koelblinger P, Thuerigen O, Dummer R. Development of encorafenib for BRAF-mutated advanced melanoma. Curr Opin Oncol. 2018; 30(2):125–33.
Kim A and Cohen MS. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin Drug Discov 2016; 11(9):907–16.
Karoulia Z, Gavathiotis E, Poulikakos PI. New perspectives for targeting RAF kinase in human cancer. Nat Rev Canc 2017; 17(11):676–91.
Adelmann CH, Ching G, Du L, Saporito RC, Bansal V, Pence LJ, Liang R, Lee W, Tsai KY. Comparative profiles of BRAF inhibitors: The paradox index as a predictor of clinical toxicity. Oncotarg 2016; 7(21):30453–460.
Yaeger R, Kotani D, Mondaca, S, Parikh AR, Bando H, Van Seventer EE, Taniguchi H, Zhao H, Thant CN, de Stanchina E, Rosen N, Corcoran RB, Yoshino T, Yao Zhan, Ebi H. Response to Anti-EGFR Therapy in Patients with BRAF non-V600 Mutant Metastatic Colorectal Cancer. Clin Cancer Res. 2019; 25:7089–97.
Johnson B, Loree JM, Jacome AA, Mendis S, Syed M, Morris VK, Parseghian CM, Dasari A, Pant S, Raymond VM, Vilar E, Overman M, Kee B, Eng C, Raghav K, Kopetz S. A typical, Non-V600 BRAF Mutations as a Potential Mechanism of Resistance to EGFR Inhibition in Metastatic Colorectal Cancer. JCO Precis Oncol. 2019;3:19.
Shinozaki E, Yoshino T, Yamazaki K, Muro K, Yamaguchi K, Nishina T, Yuki S, Shitara K, Bando H, Mimaki S, Nakai C, Matsushima K, Suzuki Y, Akagi K, Yamanaka T, Nomura S, Fujii S, Esumi H, Sugiyama M, Nishida N, Mizokami M, Koh Y, Abe Y, Ohtsu A, Tsuchihara K. Clinical signifificance of BRAF non-V600E mutations on the therapeutic effects of antiEGFR monoclonal antibody treatment in patients with
pretreated metastatic colorectal cancer: the Biomarker Research for anti-EGFR monoclonal Antibodies by Comprehensive
Cancer genomics (BREAC) study. Br J Cancer 2017; 117:1450–8.
Zambon A, Niculescu-Duvaz I, Niculescu-Duvaz D, Marais R, Springer CJ. Small molecule inhibitors of BRAF in clinical trials. Bio Med Chem Lett 2012; 22:789-92.
Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Canc 2009; 9:28-39.
Pircher M, Winder T, Trojan A. Response to vemurafenib in metastatic triple-negative breast cancer harbouring a BRAF
V600E mutation: A case report and electronically captured patient-reported outcome. Case Rep Oncol 2021; 14:616-21.
Mattei PL, Alora-Palli MB, Kraft S, Lawrence DP, Flaherty KT, Kimball AB. Cutaneous effects of BRAF inhibitor therapy: a case series. Annal Oncol: ESMO 2013; 24:530-7.
Rahman MA, Salajegheh A, Smith RA, Lam AKY. BRAF inhibitors: from the laboratory to clinical trials. Crit Rev Oncol/Hem 2014; 90(3):220.
Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH, Kaempgen E, Martin-Algarra S, Karaszewska B, Muuch C, Chiarion-Sileni V, Martin A, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB. Dabrafenib in BRAF mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lanc 2012; 380:358-40.
Stuart DD, Li N, Poon DJ, Aardalen K, Kaufman S, Merritt H, Salangsang F, Lorenzana E, Li A, Ghoddusi M. Preclinical profile of LGX818: A potent and selective RAF kinase inhibitor. Canc Res 2012; 72:(8 Suppl: Abstract 3790).
Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K, Li L, Malley KSM, Fong D, Zhu Y, Marimuthu A, Nguyen H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C, Settachatgul C, Shellooe R, Cantwell J, Kim S, Schlessinger J, Zhang KY, West BL, Powell B, Habets G, Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bollag G. Discovery of a selective inhibitor of oncogenic BRaf kinase with potent antimelanoma activity. Proc Nat Acad Sci USA 2008; 105:3041-6.
Nucera C, Nehs MA, Nagarkatti SS, Sadow PM, Mekel M, Fischer AH, Lin PS, Bollag GE, Lawler J, Hodin RA, Parangi S. Targeting BRAFV600E with PLX4720 displays potent antimigratory and anti-invasive activity in preclinical models of human thyroid cancer. The Oncol. 2011; 16:296-309.
King AJ, Patrick DR, Batorsky RS, Ho ML, Do HT, Zhang SY, Kumar R, Rusnak DW, Takle AK, Wilson DM, Hugger E, Wang L, Karreth F, Lougheed JC, Lee J, Chau D, Stout TJ, May EW, Rominger CM, Schaber MD, Luo L, Lakdawala AS, Adams JL, Contractor RG, Smalley KSM, Herlyn M, Morrissey MM, Tuveson DA, Huang PS. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the
kinase inhibitor SB-590885. Canc Res. 2006; 66:11100-5.
Takle AK, Brown MJ, Davies S, Dean DK, Gaiba A, Irving EA, King FD, Naylor A, Parr CA, Ray AM, Reith AD, Smith BB, Staton PC, Steadman JG, Stean TO, Wilson DM. The identification of potent and selective imidazole-based inhibitors of B-Raf kinase. Bio Med Chem Lett. 2006;16:378-81.
Hoeflich KP, Herter S, Tien J, Wong L, Berry L, Chan J, O’Brien C, Modrusan Z, Seshagiri S, Lackner M, Stem H, Choo E, Murray L, Friedman LS, Belvin M. Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by BRAFV600E mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Canc Res. 2009; 69:3042-51.
Whittaker S, Kirk R, Hayward R, Zambon A, Viros A, Cantarino N, Affolter A, Nourry A, Niculescu-Duvaz D, Springer C, Marais R. Gatekeeper mutations mediate resistance to BRAF-targeted therapies. Sci Trans Med. 2010; 2:35ra41.
Brose MS, Nutting C, Jarzab B, Elisei R, Siena S, Bastholt L, de la Fouchardiere C, Pacini F, Paschke R, KeeShong Y, Sherman SI, Smit JWA, Chung J, Kappeler C, Pena C, Molnar I, Schlumberger MJ. Sorafenib in locally advanced or metastatic patients with radioactive iodine-refractory differentiated thyroid cancer: The phase III DECISION trial. J Clin Oncol. 2013; 31(18):(suppl; abstr 4).
FDA. FDA approves regorafenib (Stivarga) for metastatic colorectal cancer. Oncol (Williston Park, NY) 2012;26:896.
FDA FDA approves regorafenib (Stivarga) for GIST. Oncol (Williston Park, NY) 2013; 27:164.
Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouche O, Mineur L, Barone C, Adenis A, Tabernero J, Yoshino T, Lenz H, Goldberg RM, Sargent DJ, Cihon F, Cupit L, Wagner A, Laurent D. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lanc. 2013; 381, 303-12.
Schwartz GK, Robertson S, Shen A, Wang E, Pace L, Mendelson HD, Shannon P, Gordon M. A phase I study of XL281, a selective oral RAF kinase inhibitor, in patients (Pts) with advanced solid tumors. J Clin Oncol. 2009; 27:15s.
Sharfman WH, Hodi FS, Lawrence DP, Flaherty KT, Amaravadi RK, Dummer KBK, Gobbi S, Puzanov I, Sosman JA, Dohoney K, Lam LP, Kakar S, Tang Z, Krieter O, Atkins MB. Results from the first-in-human (FIH) phase I study of the oral RAF inhibitor RAF265 administered daily to patients with advanced cutaneous melanoma. J Clin Oncol. 2011; 29:(suppl; abstr 8508).
Su Y, Vilgelm AE, Kelley MC, Hawkins OE, Liu Y, Boyd KL. RAF265 inhibits the growth of advanced human melanoma tumors. Clin Canc Res. 2012; 18:2184-98.
Yu Y, Zhao X, Gu X, Chang E. Pharmacodynamic biomarkers for ARQ736, a small molecule BRAF inhibitor. Canc Res 2010; 70:(8 Suppl: Abstract 2517).
Huang T, Karsy M, Zhuge J, Zhong M, Liu D. B-Raf and the inhibitors: from bench to bedside. J Hem Oncol. 2013; 6:30.
Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Majo M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AMM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011; 364:2507–16.
Spagnolo F, Ghiorzo P, Queirolo P. Overcoming resistance to BRAF inhibition in BRAF mutated metastatic melanoma. Oncotarg. 2014; 5:10206.
Amaral T, Sinnberg T, Meier F, Krepler C, Levesque M, Niessner H, Garbe C. The mitogen-activated protein kinase pathway in melanoma part I—Activation and primary resistance mechanisms to BRAF inhibition. Eur J Cancer. 2017; 73:85–92.
Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Rong QZ, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nat 2012; 487:500–4.
Rizos H, Menzie AM, Pupo GM, Carlino MS, Fung C, Hyman J, Haydu LE, Mijatov B, Becker TM, Boyd SC, Howle J, Saw R, Thompson JF, Kefford RF, Scolyer RA, Long GV. BRAF inhibitor resistance mechanisms in metastatic melanoma: Spectrum and clinical impact. Clin Cancer Res. 2014; 20:1965– 77.
Johnson DB, Menzies AM, Zimmer L, Eroglu Z, Ye F, Zhao S, Rizos H, Sucker A, Scolyer RA, Gutzmer R, Gogas H, Kefford RF, Thompson JF, Becker JC, Berking C, Egberts F, Loquai C, Goldinger SM, Pupo GM, Hugo W, Kong X, Garraway LA, Sosman JA, Ribas A, Lo RS, Long GV, Schadendorf D. Acquired BRAF inhibitor resistance: A multicenter metaanalysis of the spectrum and frequencies, clinical behaviour, and
phenotypic associations of resistance mechanisms. J Cancer. 2015; 51:2792–99.
Heidorn SJ, Milagre C, Whittaker S, Nourry A, NiculescuDuvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 2010; 140:209–21.
Wang J, Yao Z, Jonsson P, Allen AN, Qin ACR, Uddin S, Dunkel IR, Petriccione M, Manova K, Haque S, Rosenblum MK, Pisapia DJ, Rosen N, Taylor BS, Pratilas CA. A secondary mutation in BRAF confers resistance to RAF inhibition in a BRAFV600E-mutant brain tumor. Canc Disc. 2018; 8:1130–41.
Hoogstraat M, Hooijdonk CG, Ubink I, Besselink NJ, Pieterse M, Veldhuis W. Detailed imaging and genetic analysis reveal a secondary BRAF (L505H) resistance mutation and extensive intrapatient heterogeneity in metastatic BRAF mutant melanoma patients treated with vemurafenib. Pigment. Cell Melanoma Res. 2015; 28:318–23.
Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT, Hersey P, Kefford R, Lawrence D, Puzanov I, Lewis KD, Amaravadi RK, Chmielowski B, Lawrence HJ, Shyr Y, Ye F, Li J, Nolop KB, Lee RJ, Joe AK, Ribas A. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl J Med. 2012; 366:707–14. 56. Tanda ET, Vanni I, Boutros A, Andreotti V, Bruno W, Ghiorzo P, Spagnolo F. Current state of target treatment in BRAF mutated melanoma. Front Mol Bios. 2020; 7:154.
Kakadia S, Yarlagadda N, Awad R, Kundranda M, Niu J, Naraev B, Mina L, Dragovich T, Gimbel M, Mahmoud F. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018; 11:7095–107.
Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, Lichinitser M, Dummer R, Grange F, Mortier L, Chiarion-Sileni V, Drucis K, Krajsova I, Hauschild A, Lorigan P, Wolter P, Long GV, Flaherty K, Nathan P, Ribas A, Martin A, Sun P, Crist W, Legos J, Rubin
SD, Little SM, Schadendorf D. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015; 372:30–39.
Ascierto PA, McArthur GA, Dreno B, Atkinson V, Liszkay G, Di Giacomo AM, Mandala M, Demidov L, Stroyakovskiy D, Thomas L, de la Cruz-Merino L, Dutriaux C, Garbe C, Yan Y, Wongchenko M, Chang I, Hsu JJ, Koralek DO, Rooney I, Ribas A, Larkin J. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): Updated efficacy results from a randomised, double-blind, phase 3 trial.
Lanc Oncol. 2016; 17:1248–60.
Kattan J, Kattan C, Farhat F, Assi T. Overcoming the resistance to BRAF inhibitor by the double BRAF and MEK inhibitions in advanced melanoma: A case report. Antican Drg 2019; 30:1052–54.
Wongchenko MJ, McArthur GA, Dreno B, Larkin J, Ascierto PA, Sosman J, Andries L, Kockx M, Hurst SD, Caro I, Rooney I, Hedge PS, Molinero L, Yue H, Chang I, Amler L, Yan Y, Ribas A. Gene Expression Profiling in BRAF-Mutated Melanoma Reveals Patient Subgroups with Poor Outcomes to Vemurafenib That May Be Overcome by Cobimetinib Plus Vemurafenib. Clin Cancer Res. 2017; 23:5238–45.
Jiang X, Zhou J, Giobbie-Hurder A, Wargo J, Hodi FS. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res. 2013; 19:598–609.
Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, Garbe C, Schadendorf D, Krajsova I, Gutzmer R, Chiarion-Sileni V, Dutriaux C, de Groot JW, Yamazaki N, Loquai C, Parseval LA, Pickard MD, Sandor V, Robert C, Flaherty KT. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): A multicentre, open-label, randomised phase 3
trial. Lanc Oncol. 2018; 19:603–15.
Schreuer M, Jansen Y, Planken S, Chevolet I, Seremet T, Kruse V, Neyns B. Combination of dabrafenib plus trametinib for BRAF and MEK inhibitor pretreated patients with advanced BRAFV600-mutant melanoma: An open-label, single arm, dualcentre, phase 2 clinical trial. Lanc Oncol. 2017; 18:464–72.
Kattan J, Kattan C, Farhat F, Assi T. Overcoming the resistance to BRAF inhibitor by the double BRAF and MEK inhibitions in advanced melanoma: A case report. Anticanc Drugs. 2019; 30:1052–54.
Griffin M, Daniele S, Debra HJ, Silvia M, Silvia C, Heather JB, Pellizzari G, Wynne MD, Nakamura M, Hoffmann RM, Ilieva KM, Cheung A, Spicer JF, Papa S, Lacy KE, Karagiannis SN. BRAF inhibitors: resistance and the promise of combination treatments for melanoma. Oncotarg. 2017; 8(44):78174–192.
Hassel JC, Lee SB, Meiss F, Meier F, Dimitrakopoulou-Strauss A, Jäger D, Enk AH. Vemurafenib and ipilimumab: A promising combination? Results of a case series. Oncoimmunology 2016; 5:e1101207.
Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med 2013; 368:1365–6.
Puzanov I. Combining targeted and immunotherapy: BRAF inhibitor dabrafenib (D) ± the MEK inhibitor trametinib (T) in combination with ipilimumab (Ipi) for V600E/K mutationpositive unresectable or metastatic melanoma (MM). J Transl Med 2015; 13:S1-K8.
Eroglu Z and Ribas A. Combination therapy with BRAF and MEK inhibitors for melanoma: latest evidence and place in therapy. Ther Adv Med Oncol 2016;8:48–56.
Iheagwam FN, Ogunlana OO, Ogunlana OE, Isewon I, Oyelade J. Potential Anti-Cancer Flavonoids Isolated From Caesalpinia bonduc Young Twigs and Leaves: Molecular Docking and In Silico Studies. Bioinform Biol Insights 2018; 13:1-16.
Proietti I, Skroza N, Nicoletta B, Ersilia T, Veronica B, Anna M, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of acquired BRAF inhibitor resistance in melanoma: a systematic review. Canc 2020; 12:2801.
Iweala EEJ, Olusegun DO, Dania OE. Assessment of Potential Carcinogens in Some Fast Foods Sold in a Nigerian University Campus. Trop J Nat Prod Res. 2022; 6(1):50-54. doi.org/10.26538/tjnpr/v6i1.10
Fu Y, Rathod D, Abo-Ali EM, Dukhande VV, Patel K. EphA2- Receptor Targeted PEGylatedNanoliposomes for the Treatment of BRAFV600E Mutated Parent- and Vemurafenib-Resistant Melanoma. Pharm 2019; 11:504.
Tham HP, Xu K, Lim WQ, Chen H, Zheng M, Thng TG, Venkatraman SS, Xu Chenjie, Zhao Y. Microneedle-Assisted Topical Delivery of Photodynamically Active Mesoporous Formulation for Combination Therapy of Deep-Seated Melanoma. ACS Nano 2018; 12:11936–948.
Krepler C, Xiao M, Sproesser K, Brafford PA, Shannan B, Beqiri M, Liu Q, Xu W, Garman B, Nathanson KL, Xu X, Karakousis GC, Mills GB, Lu Y, Ahmed TA, Poulikakos PI, Caponigro G, Boehm M, Peters M, Schuchter LM, Weeraratna AT, Herlyn M. Personalized Preclinical Trials in BRAF
Inhibitor-Resistant Patient-Derived Xenograft Models Identify Second-Line Combination Therapies. Clin Cancer Res. 2016; 22:1592–602.
Arteaga CL and Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Canc Cell 2014; 25:282–303.
Cohen RB. Current challenges and clinical investigations of epidermal growth factor receptor (EGFR)- and ErbB familytargeted agents in the treatment of head and neck squamous cell carcinoma (HNSCC). Cancer Treat Rev 2014; 40:567–77.
Paraiso KH, Fedorenko IV, Cantini LP, Munko AC, Hall M, Sondak VK, Messina JL, Flaherty KT, Smalley KSM. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J. Cancer 2010; 102:1724–30.
Subbiah V, Baik C, Kirkwood JM. Clinical Development of BRAF plus MEK Inhibitor Combinations. Trends Canc 2020; 6(9):797-810.