Effect of a Phytonutrient-Rich Product and Administration Time on Cyanide-Induced Cardiotoxicity doi.org/10.26538/tjnpr/v4i7.9
Main Article Content
Abstract
Exposure to cyanide can cause tachycardia, low heartbeat, and cardiac arrest. Trèvo® is a phytochemical-rich product reported to reduce aging and improve immune system. We investigated the ability of trèvo to mitigate the cardiotoxicity of cyanide in male Wistar rats. Twenty-four animals divided into four groups of six animals per group were used for the experiment. Group I (administered distilled water (orally); group II (administered 5 mg/kg bwt KCN [orally]); group III (administered 5 mg/kg bwt KCN [orally] and 2 mL/kg bwt trèvo [orally] after 5 min of exposure to cyanide); group IV (administered 5 mg/kg bwt KCN [orally] + 2 mL/kg bwt trèvo [orally] after 60 min of exposure to cyanide). Malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), acetylcholinesterase (AChE), cytochrome C oxidase (CCO), as well as p53 were evaluated. KCN caused a significant (P < 0.05) decrease in the activities of CCO, CAT, and SOD, raised the level of p53, AChE, and MDA respectively. Trèvo administered immediately after cyanide exposure suppresses the toxic effect of cyanide to various degrees. Histopathological evaluation shows that KCN did not caused any morphological damage to the heart. It can be summarized that trevo has the potential to reverse the biochemical toxicity of cyanide in the heart. There are still more work to ascertain the level of protection offered by trèvo as an antidote against cyanide poison.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Bebarta VS, Pitotti RL, Dixon P, Lairet JR, Bush A, Tanen DA. Hydroxocobalamin versus sodium thiosulfate for the treatment of acute cyanide toxicity in a swine (Sus scrofa) model. Ann Emerg Med. 2012; 59:532–539.
Istre GR, McCoy MA, Osborn L, Barnard JJ, Bolton A. Deaths and injuries from house fires. N Engl J Med. 2001; 344:1911-1916.
Cheung JY, Merali S, Wang J, Zhang XQ, Song J, Merali C, Dhanendra T, You H, Judenherc-Haouzi A, Haouzi P. The Central Role of Protein Kinase C Epsilon in Cyanide Cardiotoxicity and Its Treatment. Toxicol Sci. 2019; 171(1):247–257.
Shiddappa MS and Muniswamy D. Subchronic cyanide toxicity on the male reproductive system of the albino rat. Toxicol Res. 2015; 4(1) 7-64.
Bebarta VS, Pitotti RL, Borys DJ, Morgan DL. Seven years of cyanide ingestions in the USA: critically ill patients are common, but antidote use is not. Emerg Med J. 2011; 28:155-158.
Fortin JL, Desmettre T, Luporsi P, Capellier G. Cyanides and cardiotoxicity. Toxicology of Cyanides and Cyanogens: Experimental, Applied, and Clinical Aspects, 2015; 224- 231 First Edition. Edited by Alan H. Hall, Gary E. Isom, and Gary A. Rockwood. John Wiley & Sons, Ltd.
Bebarta VS, Pitotti RL, Boudreau S, Tanen DA. Intraosseous versus intravenous infusion of hydroxocobalamin for the treatment of acute severe cyanide toxicity in a swine model. Acad Emerg Med. 2014; 21: 1203–1211.
Brenner M, Kim JG, Mahon SB, Lee J, Kreuter KA, Blackledge W, Mukai D, Patterson S, Mohammad O, Sharma VS, Boss GR. Intramuscular cobinamide sulfite in a rabbit model of sublethal cyanide toxicity. Ann Emerg Med. 2010; 55:352–363.
Patterson SE, Moeller B, Nagasawa HT, Vince R, Crankshaw DL, Briggs J, Stutelberg MW, Vinnakota CV, Logue BA. Development of sulfanegen for mass cyanide casualties. Ann N Y Acad Sci. 2016; 1374:202–209.
Cheung JY, Wang J, Zhang X, Song J, Tomar D, Madesh M, Judenherc-Haouzi A, Haouzi P. Methylene blue counteracts cyanide cardiotoxicity: cellular mechanisms. J Appl Physiol. 2018; 124:1164–1176.
Bhattacharya R, Singh P, John JJ, Gujar NL. Oxidative damage mediated iNOS and UCP-2 upregulation in rat brain after sub-acute cyanide exposure: dose and time- dependent effects. Drug Chem Toxicol. 2019; 42(6): 577- 584
.
Fortin JL, Desmettre T, Luporsi P, Capellier G. Cyanides and cardiotoxicity. Toxicology of Cyanides and Cyanogens: Experimental, Applied, and Clinical Aspects, 2015; 224- 231 First Edition. Edited bHall AH, Isom GE, Rockwood GA. (eds.). Toxicology of Cyanides and Cyanogens: Experimental, Applied, and Clinical Aspects. Chichester, West Sussex, UK; Hoboken, NJ: Wiley.
Shehu OZ, Akanni OE, Shehu MR, Adedokun KA, Kamorudeen RT. Antioxidant and chemotherapeutic effects of trèvo® supplement on benzene-induced leukaemia in murine models. Adv Hum Biol. 2019; 9:216-221.
Trèvo. Glossary of TrevoTrèvo Ingredients. Available from: http://www. trevotrèvocorporate.com/healthfocusinggredientglossary. [Last accessed on 2019 Nov 20].
Akinmoladun AC, Oguntunde KO, Owolabi LO, Ilesanmi OB, Ogundele JO, Olaleye MT, Akindahunsi AA. Reversal of acetaminophen-generated oxidative stress and concomitant hepatotoxicity by a phytopharmaceutical product. Food Sci Hum Well. 2017; 6:20–27.
Akinmoladun AC. Protective effect of TrévoTM, a phytopharmaceutical product, against potassium cyanide- induced oxidative stress and neurotoxicity in vitro. Biokemistri. 2016; 28(2):78–87.
Tveden-Nyborg P, Bergmann TK, Lykkesfeldt J. Basic & clinical pharmacology & toxicology policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol. 2018; 123(3):233-235.
Ilesanmi OB and Ikpesu T. Neuromodulatory activity of antioxidants, cytochrome C oxidase and p53. Adv Tradit Med. 2020;
Mastrocola R, Restivo F, Vercellinatto I, Danni O, Brignardello E, Aragno M, Boccuzzi G.
Oxidative and nitrosative stress in brain mitochondria of diabetic rats. J Endocrinol. 2005; 187:37–44.
Yang A, Kaghad M, Caput D, McKeon F. On the shoulders of giants: p63, p73, and the rise of p53. Trends Genet. 2002; 18(2):90–95.
Fortin J, Desmettre T, Manzon C, Judic-Peureux V, Peugeot-Mortier C, Giocanti J, Hachelaf M, Grangeon M, Hostalek U, Crouzet J, Capellier G. Cyanide poisoning and cardiac disorders: 161 Cases. J Emerg Med. 2010; 38(4):467–476.
Cheung JY, Merali S, Wang J, et al. The Central Role of Protein Kinase C Epsilon in Cyanide Cardiotoxicity and Its Treatment. Toxicol Sci. 2019; 171(1):247–257.
Haouzi P, Tubbs N, Rannals MD, Judenherc-Haouzi A, Cabell LA, McDonough JA, Sonobe T. Circulatory failure during noninhaled forms of cyanide intoxication. Shock. 2017; 47:352–362.
David MM, Munaswamy VV, Halappa RR, Marigoudar SR. Impact of sodium cyanide on catalase activity in the freshwater exotic carp, Cyprinus carpio (Linnaeus). Pestic Biochem Physiol. 2008; 92:15-18.
Pettersen J and Cohen S. The effects of cyanide on brain mitochondrial cytochrome oxidase and respiratory activities. J Appl Toxicol. 1993; 13:9-14.
Ardelt BK, Borowitz JL, Isom GE. Brain lipid peroxidation and antioxidant protectant mechanisms following acute cyanide intoxication. Toxicol. 1989; 56:147-154.
Hariharakrishnan J, Satpute RM, Prasad GBKS, Bhattacharya R. Oxidative stress-mediated cytotoxicity of cyanide in LLC-MK2 cells and its attenuation by alpha- ketoglutarate and N-acetyl cysteine. Toxicol Lett. 2009; 185:132-141.
Douglas CJ, Krishnan P, Li L, Palur GG, Yan S, Joseph LB, Gary EI. Cyanide enhancement of dopamine-induced apoptosis in mesencephalic cells involves mitochondrial dysfunction and oxidative stress. Neurotoxicol. 2003; 24:333-342.
Kavasoğlu M, Yusuf SY, Kazım UK, Donmez M, Altikat S, Yetek I.Kuru HI. Effect of Sodium Cyanide on Antioxidant Enzyme Activities and Lipid Peroxidation in Some Tissues of Mirror Carp (Cyprinus carpio). Pak J Zool. 2015; 47(6):1777- 1782.
Yeh YC., Liu TJ., Wang HW., Lee HW., Ting CT., Lee WL., Hung CJ., Wang KY., Lai HC. A standardized extract of Ginkgo biloba suppresses doxorubicin-induced oxidative stress and p53-mediated mitochondrial apoptosis in rat testes. Br J Pharmacol. 2009; 156:48–61.
Chen Y, Liu K, Shi Y, Shao C. The tango of ROS and p53 in tissue stem cells. Cell Death Differ. 2011; 25:639-641.
Abdel-Zaher AO, Abdel-Hady RH, Abdel Moneim WM, Salim SY. Alphalipoic acid protects against potassium cyanide-induced seizures and mortality. Exp Toxicol Pathol. 2011; 63:161–165.
Mathangi D, Shyamala R, Vijayashree R, Rao K, Ruckmani A, Vijayaraghavan R, Bhattacharya R. Effect of alpha- ketoglutarate on neurobehavioral, neurochemical, and oxidative changes caused by sub-chronic cyanide poisoning in rats. Neurochem Res. 2011; 36:540-548.
Okolie NP and Iroanya CU. Some histologic and biochemical evidence for mitigation of cyanide induced tissue lesions by antioxidant vitamin administration in rabbits. Food Chem Toxicol. 2003; 41:463-469.
Kanthasamy AG, Borowitz JL, Pavlakovic G, Isom GE. Dopaminergic Neurotoxicity of Cyanide: Neurochemical, Histological, and Behavioural Characterization. Toxicol Appl Pharmacol. 1994; 126:156-163.
Agu K, Okolie NP, Eze N, Anioye JC, Falodun A. Phytochemical analysis, Toxicity Profile and Haemomodulatory properties of Annona muricata (Soursop). Egy J Hematol. 2017; 42 197-211.
Erharuyi O, Adhikari A, Falodun A, Jabeen A, Ahmmad M, Imad R, Choudhary MI. Cytotoxic, anti-inflammatory, and leishmanicidal activities of Diterpenes isolated from the roots of Caesalpinia pulcherrima. Planta Med. 2017; 83:100-110.
Oghenerobo VI and Abiodun Falodun. Antioxidant activities of the leaf extract and fractions of Cola lepidota K. Schum (Sterculiaceae). Nig J Biotech. 2013; 25:31-36.
Erharuyi O and Falodun A. Free radical scavenging activities of methanol extract and fractions of Picralima nitida (Apoceanacea). J Appl Sci Environ Mgt, 2012; 16(3): 291-294.