Evaluation of the Anti-inflammatory and Antioxidant Activities of Selected Resin Exudates doi.org/10.26538/tjnpr/v4i7.1
Main Article Content
Abstract
Plant resins are reported to have high medicinal values due to their content of bioactive metabolites. Few reports were found in the last two decades concerning the chemistry and antiinflammatory activity of the resins belonging to Eucalyptus and Araucaria genera. Therefore, the exudate resins of Eucalyptus maculata, Araucaria excelsa and Araucaria bidwillii were evaluated for their phenolic and flavonoid content, together with their possible antiinflammatory potential via carrageenan-induced paw edema in rats at the doses of 100, 200, and 400 mg/kg. The methanol extract of E. maculata (MEME) kino resin was the richest in phenolics (572.82 ± 1.75 µg GAE/mg extract), and flavonoids (11.60 ± 0.01 µg QE/mg extract). The MEME (400 mg/kg) showed the most significant percentage inhibition of paw oedema (50.91%), compared to indomethacin (66.11%). The extract also decreased serum malondialdehyde (MDA) (42%), nuclear factor kappa B (NF-κB) (42.7%), tumor necrosis factor-alpha (TNF-α) (40.5%), cyclooxygenase-2 (COX-2) (42%) and nitric oxide (NO) (23%). In addition, it increased antioxidant enzymes; reduced glutathione (GSH) (2.6-fold) and superoxide dismutase (SOD) (1.3-fold), compared to control group. Moreover, it displayed a profound antioxidant property with IC50 of 6.83 ± 0.77μg/mL compared to trolox (IC50 21.18 ± 0.59 μg/mL) using DPPH assay. The methanol extract of E. maculata resin was standardized by HPLC to contain 68.21 mg of 7-O-methyl aromadendrin (MA)/g extract. These findings suggest that E. maculata kino resin is a potent antioxidant with potential therapeutic efficacy for treating inflammation.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Abd-Allah AAM, El-Deen NAMN, Mohamed WAM, Naguib FM. Mast cells and pro-inflammatory cytokines roles in assessment of grape seeds extract anti-inflammatory activity in rat model of carrageenan-induced paw edema. Iran J Basic Med Sci. 2018; 21(1):97.
Phillips WJ and Currier BL. Analgesic pharmacology: II. Specific analgesics. T J Am Acad Orthop Surg. 2004; 12(4):221- 233.
Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018; 9(1):143-150.
Parameswari P, Devika R, Vijayaraghavan P. In vitro anti- inflammatory and antimicrobial potential of leaf extract from Artemisia nilagirica (Clarke) Pamp. Saudi J Biol Sci. 2019; 26(3):460-463.
Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A, D‟Arcangelo D, Norelli S, Valle G, Nisini R, Beninati S. Beneficial role of phytochemicals on oxidative stress and age- related diseases. BioMed Res Int. 2019; 2019, Article ID 8748253
Vasanthi HR, ShriShriMal N, K Das D. Phytochemicals from plants to combat cardiovascular disease. Curr Med Chem. 2012; 19(14):2242-2251.
Srivastava S, Chowdhury AR, Thombare N. Quality requirement and standards for natural resins and gums. Int J Bioresour Sci. 2016; 3(2):89-94.
Kortbeek RW, van der Gragt M, Bleeker PM. Endogenous plant metabolites against insects. Eur J Plant Path. 2019; 154(1):67-90.
Peralta RM, Koehnlein EA, Oliveira RF, Correa VG, Corrêa RC, Bertonha L, Bracht A, Ferreira IC. Biological activities and chemical constituents of Araucaria angustifolia: An effort to recover a species threatened by extinction. Trends Food Sci Tech. 2016; 54:85-93.
Abdel-Sattar E, Monem ARA, Ezzat SM, El-Halawany AM, Mouneir SM. Chemical and biological investigation of Araucaria heterophylla Salisb. resin. Z Naturforsch C. 2009; 64(11- 12):819-823.
Schmeda-Hirschmann G and Yesilada E. Traditional medicine and gastroprotective crude drugs. J Ethnopharmacol. 2005; 100(1):61-66.
Gowthamarajan K, Kulkarni TG, Mahadevan N, Santhi K, Suresh B. Antimicrobial activity of selected herbal extracts. Anc Sci Life. 2002; 21(3):188-190.
Mota MRL, Criddle DN, Alencar NMN, Gomes RC, Meireles AVP, Santi-Gadelha T, Gadelha CAA, Oliveira CC, Benevides RG, Cavada BS, Assreuy AMS. Modulation of acute inflammation by a chitin-binding lectin from Araucaria angustifolia seeds via mast cells. N-S Arch Pharmacol. 2006; 374(1):1-10.
Caputo R, Mangoni L, Monaco P, Pelosi L, Previtera L. Neutral diterpenes from Araucaria bidwillii. Phytochem. 1976; 15(9):1401-1402.
Rashwan O. New phenylpropanoid glucosides from Eucalyptus maculata. Mol. 2002; 7(1):75-80.
Mohamed A-F, Hasan AGA, Hamamy MI, Abdel-Sattar E. Antioxidant and hepatoprotective effects of Eucalyptus maculata. Med Sci Monit. 2005; 11(11):BR426-BR31.
Kiranmai M, Kumar CM, Mohammed I. Comparison of total flavanoid content of Azadirachta indica root bark extracts prepared by different methods of extraction. Res J Pharm Biol Chem Sci. 2011; 2(3):254-261.
Okolie N, Israel E, Falodun A. In-vitro evaluation of antioxidant potential of Rauwolfia vomitoria root extract and its inhibitory effect on lipid peroxidation as indication of aphrodisiac properties. Pharm Chem J. 2011; 45(8):476-480.
Saboo S, Tapadiya R, Khadabadi S, Deokate U. In vitro antioxidant activity and total phenolic, flavonoid contents of the crude extracts of Pterospermum acerifolium wild leaves (Sterculiaceae). J Chem Pharm Res. 2010; 2(3):417-423.
Hwang E-S and Do Thi N. Effects of extraction and processing methods on antioxidant compound contents and radical scavenging activities of laver (Porphyra tenera). Prev Nutr food Sci. 2014; 19(1):40-48.
Egharevba E, Chukwuemeke-Nwani P, Eboh U, Okoye E, Bolanle IO, Oseghale IO, Imieje VO, Erharuyi O, Falodun A. Antioxidant and Hypoglycaemic Potentials of the Leaf Extracts of Stachytarphyta jamaicensis (Verbenaceae). Trop J Nat Prod Res. 2019; 3(5):170-174.
Abdel-Sattar E, Kohiel M, Shihata I, El-Askary H. Phenolic compounds from Eucalyptus maculata. Die Pharmazie. 2000; 55(8):623-624.
Mattila P, Astola J, Kumpulainen J. Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. J Agric Food Chem. 2000; 48(12):5834-5841.
Winter CA, Risley EA, Nuss GW. Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Antiinflammatory Drugs. Proc Soc Exp Biol Med. 1962; 111(3):544-547.
El-Shenawy SM, Abdel-Salam OM, Baiuomy AR, El-Batran S, Arbid MS. Studies on the anti-inflammatory and anti-nociceptive effects of melatonin in the rat. Pharmacol Res. 2002; 46(3):235- 243.
El-Kerdawy MM, Ghaly MA, Darwish SA, Abdel-Aziz HA, Elsheakh AR, Abdelrahman RS, Hassan GS. New benzimidazothiazole derivatives as anti-inflammatory, antitumor active agents: Synthesis, in-vitro and in-vivo screening and molecular modeling studies. Bioorg Chem. 2019; 83:250-261.
Zaghloul MS and Abdelrahman RS. Nilotinib ameliorates folic acid-induced acute kidney injury through modulation of TWEAK and HSP-70 pathways. Toxicol. 2019; 427:152303.
Abdelrahman R. Protective effect of apocynin against gentamicin-induced nephrotoxicity in rats. Hum Exp Toxicol. 2018; 37(1):27-37.
Marklund SL. Superoxide dismutase isoenzymes in tissues and plasma from New Zealand black mice, nude mice and normal BALB/c mice. Mutat Res. 1985; 148(1-2):129-134.
Abdelrahman RS. Sitagliptin exerts anti-apoptotic effect in nephrotoxicity induced by cisplatin in rats. Naunyn Schmiedebergs Arch Pharmacol. 2017; 390(7):721-731.
Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001; 5(1):62-71.
Abdelrahman RS and Abdel-Rahman N. Dimethyl fumarate ameliorates acetaminophen-induced hepatic injury in mice dependent of Nrf-2/HO-1 pathway. Life Sci. 2019; 217:251-260.
Di Rosa M, Giroud J, Willoughby D. Studies of the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Path. 1971; 104(1):15-29.
Afsar T, Khan MR, Razak S, Ullah S, Mirza B. Antipyretic, anti- inflammatory and analgesic activity of Acacia hydaspica R. Parker and its phytochemical analysis. BMC Compl Altern Med. 2015; 15:136-148.
Crunkhorn P and Meacock SC. Mediators of the inflammation induced in the rat paw by carrageenin. Br J Pharmacol. 1971; 42(3):392-402.
Rouzer CA and Marnett LJ. Cyclooxygenases: structural and functional insights. J Lipid Res. 2009; 50 Suppl:S29-34.
Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991; 43(2):109-142.
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009; 1(6):a001651.
Dawson J, Sedgwick AD, Edwards JC, Lees P. A comparative study of the cellular, exudative and histological responses to carrageenan, dextran and zymosan in the mouse. Int J Tissue React. 1991; 13(4):171-185.
Chang HY, Sheu MJ, Yang CH, Lu TC, Chang YS, Peng WH, Huang SS, Huang GJ. Analgesic effects and the mechanisms of anti-inflammation of hispolon in mice. Evid Based Complement Alternat Med. 2011; 2011:478246.
Zhou Y, Jiang Z, Lu H, Xu Z, Tong R, Shi J, Jia G. Recent Advances of Natural Polyphenols Activators for Keap1‐Nrf2 Signaling Pathway. Chem Biodivers. 2019; 16(11):e1900400.