Effects of Costus afer Extract in Mouse Models of Anxiety and Depression and Its Possible Mechanisms of Action

doi.org/10.26538/tjnpr/v6i4.30

Authors

  • Idayat A. Akinwumi Pharmacognosy Department, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
  • Mubo A. Sonibare Pharmacognosy Department, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
  • Adeola T. Salami Physiology Department, College of Medicine, University of Ibadan, Ibadan, Nigeria

Keywords:

Costus afer, Costaceae, Anxiolytic, Antidepressant, Mental disorders, Imipramine

Abstract

Costus afer (Costaceae) is a perennial rhizomatous plant found in tropical Africa. It is used in traditional medicine to treat central nervous system disorders. The study investigated the anxiolytic- and antidepressant-like effects of the hydroethanol leaf extract of Costus afer and its possible mechanism(s) of action in mice. C. afer (25-200 mg/kg, p.o.), distilled water (10 mL/kg, p.o.), diazepam (1 and 3 mg/kg, p.o.) and imipramine (20 mg/kg, p.o.) were given 1 h before various tests, including hole-board, open field, elevated plus maze, light/dark exploration (anxiolytic-like activity), forced swim (FST) and tail suspension (TST) (antidepressant-like effect) tests. C. afer (50-200 mg/kg) increased number of head dips (hole-board test; p < 0.05), entries and dips in open arms (elevated plus maze test; p < 0.05-0.001), general square crossings (open field test; p < 0.05) and decreased time spent in the dark box (light/dark exploration test; p < 0.05). C. afer, with peak effect observed at 200 mg/kg, increased (p < 0.01) the latency of immobility and decreased (p < 0.001) the duration of immobility in both FST and TST. Sulpiride (dopamine D2 receptor antagonist, 50 mg/kg), prazosin (α1-adrenoceptor antagonist, 1 µg/kg) and metergoline (5-HT2 receptor antagonist, 4 mg/kg) significantly (p < 0.05-0.01) blocked the anti-immobility effect of C. afer in FST. Findings showed that C. afer possess anxiolytic- and antidepressant-like activities, possibly mediated by α1-adrenergic, dopamine D2 and 5-HT2 receptors.

References

Edeoga HO and Okoli BE. Chromosome numbers of Costus lucanusianus (Costaceae) in Nigeria. Folia Geobotanica. 2000; 35:315-318.

Oliver B. Medicinal Plants in Nigeria. Nigerian College of Arts, Science and Technology, University Press, Ibadan, Nigeria. 1960; 1-33p.

Omokhua GE. Medicinal and socio-cultural importance of Costus afer (Ker Grawl) in Nigeria. Afr Res Rev. 2011; 5:282-287.

Tcheghebe OT, Tala VRS, Fouodjouo M. Ethnobotanical uses, phytochemical and pharmacological profiles, and toxicity of Costus afer Ker Gawl.: An overview. J Sci Res Allied Sci. 2018; 1:1-11.

Awouters F, Niemegeers CJ, Lenaerts FM, Janssen PA. A new way to evaluate inhibitors of prostaglandin biosynthesis. J Pharm Pharmacol. 1978; 30:41-45.

Ezejiofor AN, Igweze Z, Amadi CN. Evaluations of some biological properties of ethanol leave extract of Costus afer (Ker Gawl). IOSR J Pharm Biol Sci. 2017; 12:62-68.

Ezejiofor AN and Igweze Z. Some biological and CNS properties of the ethanol extract of Costus afer stem Ker Gawl (Costaceae). World J Pharm Pharmaceut Sci. 2016; 5:337-353.

Okoronkwo SO, Egwu EO, Uchewa OO, Amadi BN, Ewunonu EO, Okoronkwo AC. Behavioural and histological study of crude extracts of Costus afer on temporal lobe of Wistar rats. World J Pharm Pharm Sci. 2018; 7:159-169.

Finbarrs‑Bello E, Egwu AO, Esom E, Okefie EO. Neurobehavioural and histological effects of Akaki extract on the temporal lobe: Mimicking traditional treatment method. J Exp Clin Anat. 2014; 13:45-49.

Finbarrs-Bello E, Egwu EO, Awara CE, Ojo OP. Effect of combination of three herbs (Akaki extract) on frontal lobe of the albino Wistar rat. Int J Health Sci Res. 2017; 7:40-45.

Zahoor Ahmad R, Nateshprabhu M, Sushma DS, Rakesh KB, Sunil P, Ullal Sheetal D. Evaluation of Costus speciosus in experimental models of depression in albino mice. Pharmacogn J. 2016; 8:483-486.

Khooshbu P and Ansari I. Evaluation of anti-Alzheimer activity of alcoholic extract of Costus pictus D. Don leaves in Wistar albino rats. Asian J Pharm Clin Res. 2020; 13:36-43.

Tracy N. Relationship between depression and anxiety. HealthyPlace. https://www.healthyplace.com/depression/anxiety-anddepression/relationship-between-depression-and-anxiety. Accessed on 31 January, 2022.

Jansson-Fröjmark M and Lindblom K. A bidirectional relationship between anxiety and depression, and insomnia? A prospective study in the general population. J Psychosom Res. 2007; 64:443-449.

WHO. Depression. Fact sheets. WHO, Geneva, Switzerland. 2021. https://www.who.int/news-room/factsheets/detail/depression. Accessed on 31 January, 2022.

Kessler RC and Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health. 2013; 34:119-138.

Murtala AA, Akindele AJ, Oreagba IA. Anticonvulsant, muscle relaxant and in-vitro antioxidant activities of hydroethanol leaf extract of Costus afer Ker Gawl (Costaceae) in mice. Trop J Nat Prod Res. 2020; 4:195-202.

Akindele AJ and Adeyemi OO. Evaluation of the antidiarrhoeal activity of Byrsocarpus coccineus. J Ethnopharmacol. 2006; 108:20-25.

Godswill NA, Onajobi F, Osilesi O, Adebawo O, Efere MO. Chemical constituents in n butanol fractions of Costus afer Ker Gawl leaf and stem. J Intercult Ethnopharmacol. 2014; 3:78-84.

Barua CC, Roy JD, Buragohian B, Barua AG, Borah P, Lahkar M. Anxiolytic effect of hydroethanol extract of Drymaria cordata L Willd. Indian J Exp Biol. 2009; 47:969-973.

Salako OA, Akindele AJ, Balogun AO, Adeyemi OO. Investigation of antidepressant, anxiolytic and sedative activities of the aqueous leaf extract of Musa sapientum Linn. (Banana; Musaceae). Drug Res. 2018; 68:1-8.

Murtala AA and Akindele AJ. Anxiolytic- and antidepressant-like activities of hydroethanol leaf extract of Newbouldia laevis (P. Beauv.) Seem. (Bignoniaceae) in mice. J Ethnopharmacol. 2020; 249:112420.

Wang Y, Fang Q, Gong N. A modified light and dark box test for the common marmoset. Neurosci Bull. 2014; 30:394-400.

Common KG, Cholanians AB, Babb JA, Ehlinger DG. The rodent forced swim test measures stress-coping strategy, not depression-like behaviour. ACS Chem Neurosci. 2017; 8:955-960.

Gonçalves FM, Neis VB, Rieger DK, Peres TV, Lopes MW, Heinrich IA, et al. Glutamatergic system and mTOR signaling pathway participate in the antidepressant-like effect of inosin in the tail suspension test. J Neural Transm (Vienna). 2017; 124:1227-1237.

Akindele AJ and Adeyemi OO. Anxiolytic and sedative properties of Bryoscarpus coccineus Schum and Thonn (Connaraceae). Int J Appl Res Nat Prod. 2010; 3:28-36.

Takeda H, Tsuji M, Matsumiya T. Changes in head-dipping behaviour in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. Eur J Pharmacol. 1998; 350:21-29.

Adebesin IF, Akindele AJ, Adeyemi OO. Evaluation of neuropharmacological effects of aqueous leaf extract of Albizia glaberrima(Leguminosae) in mice. J Ethnopharmacol. 2015; 160:101-108.

Novas ML, Wolfman C, Medina JH, De Robertis E. Proconvulsant and anxiogenic effects of n-butyl beta carboline-3-carboxylate, an endogenous benzodiazepine binding inhibitor from brain. Pharmacol Biochem Behav. 1988; 30:331-336.

Rodgers RJ, Cao BJ, Dalvi A, Holmes A. Animal models of anxiety: an ethological perspective. Braz J Med Biol Res. 1997; 30:289-304.

Santos FJB, Lima SG, Cerqueira GS, Citó AML, Cavalcante AAC, Marques THC, Freitas RM. Chemical composition and anxiolytic-like effects of the Bauhinia platypetala. Braz J Pharmacogn. 2012; 22:507-516.

Belzung C and Griebel G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res. 2001; 125:141-149.

Porsolt RD, Bertin A, Jalfre M. Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1977; 229:327-336.

Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacol (Berl.). 1985; 85:367-370.

Duman CH. Models of depression. Vitam Horm. 2010; 82:1-21.

Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965; 122:509-522.

Van Oekelen D, Luyten WH, Leysen JE. 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci. 2003; 72:2429-2449.

Hamner MB and Diamond BI. Plasma dopamine and norepinephrine correlations with psychomotor retardation, anxiety and depression in non-psychotic depressed patients: a pilot study. Psychiatry Res. 1996; 64:209-211.

Lambert G, Johansson M, Agren H, Friberg P. Reduced brain norepinephrine and dopamine release in treatment refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. Arch Gen Psychiatry. 2000; 57:787-793.

Klimek V, Schenck JE, Han H, Stockmeier CA, Ordway GA. Dopaminergic abnormalities in amygdaloid nuclei in major depression: a postmortem study. Biolm Pshchiatry. 2002; 52:240-248.

Wang YM, Xu F, Gainetdinov RR. Genetic approach to studying norepinephrine function: knockout of the mouse norepinephrine transporter gene. Biol Psychiatry. 1999; 46:1124-1130.

Bhosale UA, Yegnanarayan R, Pophale PD, Zambare MR, Somani RS. Study of central nervous system depressant and behavioural activity of an ethanol extract of Achyranthes aspera (Agadha) in different animal models. Int J Appl Basic Med Res. 2011; 1:104-108.

Bahramsoltani R, Farzaei HM, Farahani MS. Phytochemical constituents as future antidepressants: a comprehensive review. Rev Neurosci. 2015; 26:699-719.

Pandey G, Sharma R, Janicak P, Davis J. Monoamine oxidase and cortisol response in depression and schizophrenia. Psychiatry Res. 1992; 44:1-8.

Liu B, Xu C, Wu X, Liu F, Du Y, Sun J, Tao J, Dong J. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neurosci. 2015; 294:193-205.

Zheng S, Yu M, Lu X, Huo T, Ge L, Yang J, Wu C, Li F. Urinary metabonomic study on biochemical changes in chronic unpredictable mild stress model of depression. Clin Chim Acta. 2010; 411:204-209.

Adeoye-Isijola MO, Olajuyigbe OO, Jonathan SG, Coopoosamy RM. Bioactive compounds in ethanol extract of Lentinus squarrosulus Mont - a Nigerian medicinal plant. Afr J Tradit Complement Altern Med. 2018; 15:42-50.

Deshpande PO, Mohan V, Thakurdesai P. Preclinical safety assessment of standardized extract of Centella asiatica (L.) urban leaves. Toxicol Int. 2015; 22:10-20.

Downloads

Published

2022-04-01

How to Cite

A. Akinwumi, I., A. Sonibare, M., & T. Salami, A. (2022). Effects of Costus afer Extract in Mouse Models of Anxiety and Depression and Its Possible Mechanisms of Action: doi.org/10.26538/tjnpr/v6i4.30. Tropical Journal of Natural Product Research (TJNPR), 6(4), 654–660. Retrieved from https://tjnpr.org/index.php/home/article/view/114