In Vitro Antimalarial and Cytotoxic Activities of Sauropus androgynus Leaves Extracts

doi.org/10.26538/tjnpr/v4i9.11

Authors

  • Anisah Mahardiani Department of Pharmacognocy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya-Indonesia
  • Suciati Suciati Department of Pharmacognocy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya-Indonesia
  • Wiwied Ekasari Department of Pharmacognocy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya-Indonesia

Keywords:

Cytotoxic, Antimalarial, Plasmodium falciparum 3D7, Sauropus androgynus

Abstract

Malaria is one of the tropical diseases that have worldwide implications, especially in developing countries. Medicinal plants have served as a potential source for the future of antimalarial drugs. The leaves of Sauropus androgynus is known for its antibacterial, analgesic, anti-inflammatory, antihypertensive, and wound healing effects. The leaves of S. androgynus have been consumed as food for its nutritive values. However, the antimalarial compound(s) from its leaves has not been reported before. This research aims to investigate the in vitro antimalarial activities of the n-hexane, chloroform, and 96% ethanol extracts of S. androgynus leaves, as well as to study the cytotoxic activity of the extracts. The leaves of S. androgynus were successively extracted with n-hexane, chloroform, and 96% ethanol in order of increasing polarity. The antimalarial activity used Plasmodium falciparum 3D7 strain (chloroquinesensitive). The cytotoxicity assay used Huh7it cells with tetrazolium based colorimetric method. After cell viability was performed, the cytotoxicity value can be determined. The chloroform, nhexane, and 96% ethanol extracts showed antimalarial activity with IC50 values of 0.85 µg/mL, 1.23 µg/mL, and 1.88 µg/mL, respectively. On the other hand, the cytotoxic results of chloroform, n-hexane, and 96% ethanol extracts were 136.00 µg/mL, 766.56 µg/mL, and 896.07 µg/mL, respectively. In conclusion, the research indicates that the chloroform extract of S. androgynus leaves has potential for use as antimalarial agents.

References

Haldar K and Mohandas N. Malaria, erythrocytic infection, and anemia. Hematology Am Soc Hematol Educ Program. 2009; 1:87-93.

Toé KH, Jones CM, N’Fale S, Ismail HM, Dabiré RK, Ranson H. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg Infect Dis. 2014; 20(10):1691–1696.

Suh KN, Kain KC, Keystone JS. Malaria. Can Med Assoc J. 2004; 170(11):1693–1702.

Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005; 434(7030):214–217.

World Health Organization. World Malaria Report Global Malaria Programme. Geneva: WHO Press. 2019.

Geleta G and Ketema T. Severe malaria associated with Plasmodium falciparum and P. vivax among children in Pawe Hospital, Northwest Ethiopia. Malar Res Treat. 2016.; 1-7. Article ID:1240962.

Komba AN, Makani J, Sadarangani M, Ajala-Agbo T, Berkley JA, Newton CRJC, Marsh K, Williams TN. Malaria as a cause of morbidity and mortality in children with homozygous sickle cell disease on the coast of Kenya. Clin Infect Dis. 2009; 49(2):216–222.

Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ. Antimalarial drug resistance: literature review and activities and findings of the ICEMR Network. Am J Trop Med Hyg. 2015; 93(3):57–68.

Ogbeide OK, Okhomina OK, Omoregie IG, Unuigbe CA, Ighodaro A, Akhigbe IU, Iheanacho CM, Akubuiro PC, Solomon A, Irabor EEI, Owolabi BJ, Falodun A. Antimalarial, ferric reducing antioxidant power and elemental analysis of Caesalpinia pulcherrima leaf extract. J Chem Soc Nig. 2020; 45(4):704–711.

Eastman RT and Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol. 2009; 7(12):864–874.

Pousibet-Puerto J, Salas-Coronas J, Sánchez-Crespo A, Molina-Arrebola MA, Soriano-Pérez MJ, Giménez-López MJ, Vázquez-Villegas J, Cabezas-Fernández MT. Impact of using artemisinin-based combination therapy (ACT) in the treatment of uncomplicated malaria from Plasmodium falciparum in a non-endemic zone. Malar J. 2016; 15:339.

Matiya DJ, Philbert AB, Kidima W, Matowo JJ. Dynamics and monitoring of insecticide resistance in malaria vectors across mainland Tanzania from 1997 to 2017: a systematic review. Malar J. 2019; 18:102.

Quinghaosu Antimalarial Coordinating Research Group. Antimalaria studies on Qinghaosu. Chin Med J. 1979; 92(12):811-816.

Wells TNC, van Huijsduijnen RH, van Voorhis WC. Malaria medicines: a glass half full? Nat Rev Drug Discov. 2015; 14(6):424-442.

Ogbeide OK, Dickson VO, Jebba RD, Owhiroro DA, Marvelous OO, Imieje VO, Erharuyi O, Owolabi BJ, Fasinu PS, Falodun A. Antiplasmodial and acute toxicity studies of fractions and cassane-type diterpenoids from the stem bark of Caesalpinia pulcherrima (L.) Sw. Trop J Nat Prod Res. 2018; 2(4):179–184.

Falodun A, Imeije V, Erharuyi O, Joy A, Langer P, Jacobs M, Khan S, Abaldry M, Hamann M. Isolation of antileishmanial, antimalarial and antimicrobial metabolites from Jatropha multifida. Asian Pac J Trop Biomed. 2014; 4(5):374–378.

Ekasari W, Putri ARK, Winata CA, Putri NT, Hamsidi R, Arwati H, Santosa MH. Antimalarial activity of multiple dose on Plasmodium berghei infected mice and heme detoxifiction inhibitor activity of Helianthus annuss L. Leaf extract. FABAD J Pharm Sci. 2020; 45(2):145-152.

Saxena S, Pant N, Jain DC, Bhakuni RS. Antimalarial agents from plant sources. Curr Sci. 2003; 85(9):1314-1329.

Sujitha K, Haritha KH, Ram R. Phytochemical screening, antioxidant, antimicrobial, and antibiofilm activity of Sauropus androgynus leaf extracts. Asian J Pharm Clin Res. 2019; 12(4):244–250.

Okolie NP, Israel EEJ, Falodun A. In-vitro evaluation of antioxidant potential of Rauwolfia vomitoria root extract and its inhibitory effect on lipid peroxidation as indication of aphrodisiac properties. Pharm Chem J. 2011; 45(8):476-480.

Falodun A, Imieje V, Erharuyi O, Ahomafor J, Jacob MR, Khan SI, Hamann MT. Evaluation of three medicinal plant extracts against Plasmodium falciparum and selected microorganisms. Afr J Tradit Compl Altern Med. 2014; 11(4):142–146.

Selvi SV and Anusha B. Phytochemical analysis and GC-MS profilling in the leaves of Sauropus androgynus (L.) Merr. Int J Drug Dev Res. 2012; 4:162-167.

Harborne AJ. Phytochemical methods a guide to modern techniques of plant analysis. London, New York: Chapman and Hall. 3rd ed., 1998. 302 p.

Trager W and Jensen JB. Human malaria parasites in continuous culture. Sci. 1976; 193(4254):673–675.

Ekasari W, Pratiwi DW, Amanda Z, Suciati, Widyawaruyanti A, Arwati H. Various parts of Helianthus annuus plants as new sources of antimalarial drugs. Evid-Based Compl Altern Med. 2019; 1-7. Article ID 7390385.

Hafid AF, Ariantari NP, Tumewu L, Hidayati AR, Widyawaruyanti A. The active marker compound identification of Artocarpus champeden Spreng steambark extract, morachalchone a as antimalaria. Int J Pharm Pharm Sci. 2012; 4(55):246-249.

Hamsidi R, Widyawaruyanti A, Hafid A, Ekasari W, Kasmawati H, Akib NI, Wahyuni, Muhammad HM. In vitro antimalarial activity of chloroform, n-butanol, and ethyl acetate fractions of ethanol extracts of Carthamus tinctorius Linn flowers. Asian J Pharm Clin Res. 2018; 11(2):121–123.

Widyawaruyanti A, Khasanah U, Tumewu L, Ilmi H, Hafid AF, Tantular IS. Antimalarial activity and cytotoxicity study of ethanol extract and fraction from Alectryon serratus leaves. Int J Pharm Pharm Sci. 2015; 7(12):250–253.

Vonthron-Sénécheau C, Weniger B, Ouattara M, Bi FT, Kamenan A, Lobstein A, Brun R, Anton R. In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected Ivorian plants. J Ethnopharmacol. 2003; 87(2-3):221– 225.

Imieje V, Zaki AA, Fasinu P, Ali Z, Khan IA, Tekwani B, Khan SI, Nosa EO, Falodun A. Antiprotozoal and cytotoxicity studies of fractions and compounds from Enantia chlorantha. Trop J Nat Prod Res. 2017; 1(2):89–94.

Arnot DE and Gull K. The Plasmodium cell-cycle: facts and questions. Ann Trop Med Parasitol. 1998; 92(4):361–365.

Saxena S, Pamt N, Jain DC, Bhakuni RS. Antimalarial agents from plant sources. Curr Sci. 2003; 85(10):1314–1329.

Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Meth. 1983; 65:55–63.

Nguyen-Pouplin J, Tran H, Tran H, Phan TA, Dolecek C, Farrar J, Tran TH, Caron P, Bodo P, Grellier P. Antimalarial and cytotoxicity activities of ethnopharmacologically selected medicinal plants from South Vietnam. J Ethnopharmacol. 2007; 109(3):417–427.

Lima RBS, Silva LFR, Melo MRS. In vitro and in vivo antimalarial activity of plants from the Brazilian Amazon. Malar J. 2015; 14:508.

Valdes AF, Martinez JM, Lizama RS, Gaiten YG, Rodriguez DA, Payrol JA. In vitro antimalarial activity and cytotoxicity of some selected Cuban medicinal plants. Rev. Inst. Med Trop Sao Paulo. 2010; 52:197–201.

Kirby GC, Khumalo-Ngwenya NB, Grawehr BA, Fison TW, Warhurst DC, Phillipson JD. Antimalarial activity from `Mhekara' (Uapaca nitida MullArg.), a Tanzanian tree. J Ethnopharmacol. 1993; 40:47–51.

Steele JC, Warhurst DC, Kirby GC, Simmonds MS. In vitro and in vivo evaluation of betulinic acid as an antimalarial. Phytother Res. 1999; 13(2):115-119.

Adelekan AM, Prozesky EA, Hussein AA, Urena LD, van Rooyen PH, Liles DC, Meyer JJM, Rodriguez B. Bioactive diterpenes and other constituents of Croton steenkampianus. J Nat Prod. 2008; 71(11):1919-1922.

Zou Y, Foubert K, Tuenter E, Lemiere F, Cos P, Maes L, Smits JMM, de Gelder R, Apers S, Pieters L. Antiplasmodial and cytotoxic activities of Striga asiatica and Sauropus spatulifolius extracts, and their isolated constituents. Phytochem Lett. 2012; 6(1):53–58.

Gabriel HB, Sussmann RAC, Kimura EA, Rodriguez AAM, Verdaguer IB, Leite GCF, Katzin AM. Terpenes as potential antimalarial drugs. 2018. In: Perveen S, Al-Taweel A (Eds.). Terpenes and terpenoids. London: IntechOpen; 2018. 39-57 p.

Hamilton AC. Medicinal plants, conservation and livelihoods. Biodiv Conserv. 2004; 13:1477–1517.

Downloads

Published

2020-09-01

How to Cite

Mahardiani, A., Suciati, S., & Ekasari, W. (2020). In Vitro Antimalarial and Cytotoxic Activities of Sauropus androgynus Leaves Extracts: doi.org/10.26538/tjnpr/v4i9.11. Tropical Journal of Natural Product Research (TJNPR), 4(9), 558–562. Retrieved from https://tjnpr.org/index.php/home/article/view/1131