Drug Development for the Management of Corona Viruses: Insights from Natural Antiviral Agents

doi.org/10.26538/tjnpr/v4i9.2

Authors

  • Taiwo O. Elufioye Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Nigeria
  • Solomon Habtemariam Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK

Abstract

Infection by human Coronaviruses (CoVs) such as HCoV-229E, HCoV-OC43, HCoV-NL63,
HCoV-HKU1generally results in moderate to severe respiratory and intestinal infections in
humans. The deadly human CoVs emerging in the last two decades however became the cause
of great global concern. The severe acute respiratory syndrome (SARS) SARS-CoV, Middle
East respiratory syndrome (MERS) (MERS-CoV) and the current SARS-CoV-2 that causes
COVID-19 are related respiratory infections with high degree of mortality.
With currently no available vaccine or approved therapy for COVID-19, the development of
directly acting antiviral drugs becomes a sensible strategy. Viral infections, like many other
disease conditions have been frequently managed using traditional medicine. COVID-19 and
SARS‑CoV‑2 infections have also been treated with preparations from traditional Chinese
medicine although their efficacy has not yet been well documented. Several antiviral agents have
also been reported from natural sources and these could provide good opportunity for
developing products and therapies that might be applicable in managing COVID-19.
In this review, we discuss natural antiviral products that target the various infection stages of the
different viruses’ including CoV, which may be useful for direct management of COVID-19 or
provide insights for the development of effective therapies.
Keywords: Natural products, Antiviral, Corona viruses, Drug development, Phytochemicals.

References

Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, Liu W, Bi Y, Gao GF. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016; 24:490-502.

Jaimes JA and Whittaker GR. Feline coronavirus: insights into viral pathogenesis based on the spike protein structure and function. Virol. 018; 517:108-121.

Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today. 2020; 25(4):668-688.

Fehr AR and Perlman S. Coronaviruses: an overview of their replication and pathogenesis. In Coronaviruses, Humana Press, New York, NY. 2015. 1-23 p.

Saif LJ, Wang Q, Vlasova AN, Jung K, Xiao S. Coronaviruses. Dis Swine. 2019; 3:488-523.

Gorbalenya AE. Severe acute respiratory syndrome-related coronavirus–The species and its viruses, a statement of the Coronavirus Study Group. BioRxiv. 2020. https://doi.org/10.1101/2020.02.07.93786 (Accessed May 11, 2020).

Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA. 2020; 323(8):707-708.

Gorse GJ, O’Connor TZ, Hall SL, Vitale JN, Nichol KL. Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease. J Infect Dis. 2009; 199:847-857.

Walsh EE, Shin JH, Falsey AR. Clinical impact of human coronaviruses 229E and OC43 infection in diverse adult populations. J Infect Dis. 2013; 208:1634-1642.

Talbot PJ, Jacomy H, Desforges M. Pathogenesis of human coronaviruses other than severe acute respiratory syndrome coronavirus. In Nidoviruses. Am Soc Microbiol. 2008. 313- 324 p.

Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014; 194:145-158.

Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, Liu C, Yang C. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020; 87:18-22.

Ji HF, Li XJ, Zhang HY. Natural products and drug discovery. EMBO Rep. 2009; 10:194-200.

Harvey AL. Natural products in drug discovery. Drug Discov Today. 2008; 13(19-20):894-901.

Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981− 2002. J Nat Prod. 2003; 66:1022-1037.

Lam KS. New aspects of natural products in drug discovery. Trends Microbiol. 2007; 15:279-289.

Lahlou M. The success of natural products in drug discovery. Pharmacol Pharm. 2013; 4:17-31.

Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015; 14:111-129.

Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016; 8:531.

Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018; 19:1578.

Avato P. Editorial to the Special Issue–Natural Products and Drug Discovery. Mol. 2020, 25:1128.

Martinez JP, Sasse F, Brönstrup M, Diez J, Meyerhans A. Antiviral drug discovery: broad-spectrum drugs from nature. Nat Prod Rep. 2015; 32:29-48.

Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020; 92:418-423.

Snijder EJ, Van Der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Meulen J, Koerten HK, Mommaas AM. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol. 2006; 80:5927- 5940.

Rasool A, Ishfaq S, Uqab B. Novel Coronavirus (2019- nCoV) Outbreak in China: From Local Epidemics to Global Pandemics. Available at SSRN 3559461. 2020. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=355 9461

Sola I, Almazan F, Zuniga S, Enjuanes L. Continuous and iscontinuous RNA synthesis in coronaviruses. Ann Rev Virol. 2015; 2:265-288.

Enjuanes L, Sola I, Almazan F, Ortego J, Izeta A, Gonzalez JM, Alonso S, Sanchez JM, Escors D, Calvo E, Riquelme

C. Coronavirus derived expression systems. J Biotech.2001; 88:183-204.

Masters PS. The molecular biology of coronaviruses. AdvVirus Res. 2006; 66:193-292.

Lei J and Hilgenfeld R. RNA‐virus proteases counteracting host innate immunity. FEBS Lett. 2017; 591:3190-3210.

Kamitani W, Huang C, Narayanan K, Lokugamage KG,Makino S. A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat StructMol Biol. 2009; 16:1134.

Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV. Human aminopeptidaseN is a receptor for human coronavirus 229E. Nature 1992; 357:420-422.

Huang X, Dong W, Milewska A, Golda A, Qi Y, Zhu QK, Marasco WA, Baric RS, Sims AC, Pyrc K, Li W. Human coronavirus HKU1 spike protein uses O-acetylated sialicacid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying

enzyme. J Virol. 2015; 89:7202-7213.

Butler N, Pewe L, Trandem K, Perlman S. Murine encephalitis caused by HCoV-OC43, a human coronavirus with broad species specificity, is partly immune-mediated.Virol. 2006; 347:410-421.

Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, GreenoughTC, Choe H. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426:450-454.

Li W, Sui J, Huang IC, Kuhn JH, Radoshitzky SR, Marasco WA, Choe H, Farzan M. The S proteins of human coronavirus NL63 and severe acute respiratory syndromecoronavirus bind overlapping regions of ACE2. Virol. 2007; 367:367-374.

Wu K, Li W, Peng G, Li F. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. P Nat Acad Sci. 2009; 106:19970- 19974.

van Doremalen N, Miazgowicz KL, Milne-Price S, Bushmaker T, Robertson S, Scott D, Kinne J, McLellan JS, Zhu J, Munster VJ. Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol. 2014; 88:9220-9232.

Bertram S, Glowacka I, Müller MA, Lavender H, Gnirss K, Nehlmeier I, Niemeyer D, He Y, Simmons G, Drosten C, Soilleux EJ. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol. 2011; 85:13363-13372.

Bertram S, Dijkman R, Habjan M, Heurich A, Gierer S, Glowacka I, Welsch K, Winkler M, Schneider H, HofmannWinkler H, Thiel V. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory

epithelium. J Virol. 2013; 87:6150-6160.

Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007; 20:660-694.

Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003; 77:8801-88011.

Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV- 2 receptor: molecular mechanisms and potential therapeutic target. Intens Care Med. 2020; 46:586-590.

Pyrc K, Berkhout B, van der Hoek L. Antiviral strategies against human coronaviruses. Infect Disord-Drug Targets (Formerly Current Drug Targets-Infectious Disorders). 2007; 7:59-66.

Mothay D, Ramesh KV. Binding site analysis of potential protease inhibitors of COVID-19 using AutoDock. Virus Dis. 2020; 31:194–199.

Bhimraj A, Morgan RL, Shumaker AH, Lavergne V, Baden L, Cheng VC, Edwards KM, Gandhi R, Muller WJ, O’Horo JC, Shoham S. Infectious diseases Society of America guidelines on the treatment and management of patients with COVID-19. Clin Infect Dis. 2020. DOI: 10.1093/cid/ciaa478

Sharma S, Basu S, Shetti NP, Aminabhavi TM. Current treatment protocol for COVID-19 in India. Sensors Int. 2020; 1: 1-3 100013.

Chen ZR, Zhou Y, Liu J, Peng HW, Zhou J, Zhong HL, Liu LL, Lai MF, Wei XH, Wen JH. The Pharmacotherapics Advice of Guidelines for COVID-19. Front Pharmacol. 2020; 11:950.

Barlow A, Landolf KM, Barlow B, Yeung SY, Heavner JJ, Claassen CW, Heavner MS. Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019. Pharmacotherapy: J Hum Pharmacol Drug Ther. 2020; 40:416-437.

Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, Tan KS, Wang DY, Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res. 2020; 7:1- 10.

Salvi R, Patankar P. Emerging pharmacotherapies for COVID-19. Biomed Pharmacother. 2020; 128: 110267.

Richards G, Mer M, Schleicher G, Stacey S. COVID-19 and the rationale for pharmacotherapy: A South Africanperspective. Wits J Clin Med 2020; 2(SI):11.

Kang KD, Cho YS, Song JH, Park YS, Lee JY, Hwang KY, Rhee SK, Chung JH, Kwon O, Seong SI. Identification of the genes involved in 1-deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85. J Microbiol. 2011; 49:431-440.

Gomollón-Bel F, Delso I, Tejero T, Merino P. Biosynthetic pathways to glycosidase inhibitors. Curr Chem Bio. 2014; 8:10-16.

Gao K, Zheng C, Wang T, Zhao H, Wang J, Wang Z, Zhai X, Jia Z, Chen J, Zhou Y, Wang W. 1-deoxynojirimycin: occurrence, extraction, chemistry, oral pharmacokinetics,biological activities and in silico target fishing. Mol. 2016; 21:1600.

Jacob JR, Mansfield K, You JE, Tennant BC, Kim YH. Natural iminosugar derivatives of 1-deoxynojirimycin inhibit glycosylation of hepatitis viral envelope proteins. J Microbiol. 2007; 45:431-440.

Tanaka Y, Kato J, Kohara M, Galinski MS. Antiviral effects of glycosylation and glucose trimming inhibitors on human parainfluenza virus type 3. Antiviral Res. 2006; 72:1-9.

Papandréou MJ, Barbouche R, Guieu R, Kieny MP, Fenouillet E. The α-glucosidase inhibitor 1- deoxynojirimycin blocks human immunodeficiency virus envelope glycoprotein-mediated membrane fusion at the CXCR4 binding step. Mol Pharmacol. 2002; 61:186-193.

Romero PA, Datema R, Schwarz RT. N-methyl-1- deoxynojirimycin, a novel inhibitor of glycoprotein processing, and its effect on fowl plague virus maturation. Virol. 1983; 130:238-242.

Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensinconverting enzyme 2 interaction. Antiviral Res. 2007; 74:92-101.

Yang YC, Lim MY, Lee HS. Emodin isolated from Cassia obtusifolia (Leguminosae) seed shows larvicidal activity against three mosquito species. J Agric Food Chem. 2003; 51:7629-7631.

Chun-Guang W, Jun-Qing Y, Bei-Zhong L, Dan-Ting J, Chong W, Liang Z, Dan Z, Yan W. Anti-tumor activity of emodin against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Eur J Pharmacol. 2010; 627:33-41.

Hsiang CY and Ho TY. Emodin is a novel alkaline nuclease inhibitor that suppresses herpes simplex virus type 1 yields in cell cultures. Brit J Pharmacol. 2008; 155:227-235.

Xiong HR, Luo J, Hou W, Xiao H, Yang ZQ. The effect of emodin, an anthraquinone derivative extracted from the roots of Rheum tanguticum, against herpes simplex virus in vitro and in vivo. J Ethnopharmacol. 2011; 133:718-723.

Li SW, Yang TC, Lai CC, Huang SH, Liao JM, Wan L, Lin YJ, Lin CW. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation. Eur J Pharmacol. 2014; 738:125-132.

Lin CW, Wu CF, Hsiao NW, Chang CY, Li SW, Wan L, Lin YJ, Lin WY. Aloe-emodin is an interferon-inducing agent with antiviral activity against Japanese encephalitis virus and enterovirus 71. Int J Antimicrob Agents 2008; 32:355-359.

Ryu YB, Jeong HJ, Kim JH, Kim YM, Park JY, Kim D, Naguyen TT, Park SJ, Chang JS, Park KH, Rho MC. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg Med Chem. 2010; 18:7940-7947.

Yu S, Yan H, Zhang L, Shan M, Chen P, Ding A, Li SF. A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. Mol. 2017; 22:299.

Lin YM, Anderson H, Flavin MT, Pai YH, MataGreenwood E, Pengsuparp T, Pezzuto JM, Schinazi RF, Hughes SH, Chen FC. In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J Nat Prod. 1997; 60:884-888.

But PP, Ooi VE, He YH, Lee SH, Lee SF, Lin RC. Antiviral amentoflavone from Selaginella sinensis. Bio Pharma Bull. 2001; 24:311-312.

Coulerie P, Nour M, Maciuk A, Eydoux C, Guillemot JC, Lebouvier N, Hnawia E, Leblanc K, Lewin G, Canard B, Figadère B. Structure-activity relationship study of biflavonoids on the Dengue virus polymerase DENV-NS5 RdRp. Planta Med. 2013; 79:1313-1318.

Lin YM, Flavin MT, Schure R, Chen FC, Sidwell R, Barnard DI, Huffmann JH, Kern ER. Antiviral activities of biflavonoids. Planta Med. 1999; 65:120-125.

Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, Lucarini M, Santini A, Souto EB, Novellino E, Antolak H. The therapeutic potential of apigenin. Int J Mol Sci. 2019; 20:1305.

Zhang W, Qiao H, Lv Y, Wang J, Chen X, Hou Y, Tan R, Li E. Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors. PloS one. 2014; 9(10):e110429.

Shibata C, Ohno M, Otsuka M, Kishikawa T, Goto K, Muroyama R, Kato N, Yoshikawa T, Takata A, Koike K. The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels. Virol. 2014; 462:42-48.

Qian S, Fan W, Qian P, Zhang D, Wei Y, Chen H, Li X. Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses. 2015; 7: 1613-1626.

Hakobyan A, Arabyan E, Avetisyan A, Abroyan L, Hakobyan L, Zakaryan H. Apigenin inhibits African swine fever virus infection in vitro. Arch Virol. 2016; 161:3445- 3453.

Rittà M, Marengo A, Civra A, Lembo D, Cagliero C, Kant K, Lal UR, Rubiolo P, Ghosh M, Donalisio M. Antiviral Activity of a Arisaema Tortuosum Leaf Extract and Some of its Constituents against Herpes Simplex Virus Type 2. Planta Med. 2020; 86:267-275.

Rosa-Calatrava M, Terrier O, Proust A, Moules V, inventors; Centre National de la Recherche Scientifique CNRS, Universite Claude Bernard Lyon 1 (UCBL), Institut National de la Sante et de la Recherche Medicale INSERM, assignee. Antiviral compositions for the treatment of

) 506 © 2020 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License infections linked to coronaviruses. United States patent application US 16/340,346. 2019.

Pitchiah KM, Sundaram KM, Ramasamy MS. Coronavirus Spike (S) Glycoprotein (2019-Ncov) Targeted Siddha Medicines Kabasura Kudineer and Thonthasura Kudineer– In silico Evidence for Corona Viral Drug. Asian J Pharm Res Health Care. 2019; 11:1-9.

Mishra A, Pathak Y, Tripathi V. Natural compounds as potential inhibitors of novel coronavirus (COVID-19) main protease: An in silico study. Res Square 2020. DOI: https://doi.org/10.21203/rs.3.rs-22839/v2

Shang X, He X, He X, Li M, Zhang R, Fan P, Zhang Q, Jia Z. The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol. 2010; 128:279- 313.

Grzegorczyk-Karolak I, Wiktorek-Smagur A, HnatuszkoKonka K. An untapped resource in the spotlight of medicinal biotechnology: The genus Scutellaria. Curr Pharma Biotech. 2018; 19:358-371.

Wen M, Li X, Fu ST. New research progress in pharmacological activities of baicalin [J]. J Shenyang Pharm Uni 2008; 2.1-14

Liang W, Huang X, Chen W. The effects of baicalin and baicalein on cerebral ischemia: a review. Aging Dis. 2017; 8:850.

Moghaddam E, Teoh BT, Sam SS, Lani R, Hassandarvish P, Chik Z, Yueh A, Abubakar S, Zandi K. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci Rep. 2014; 4:5452.

Ding Y, Dou J, Teng Z, Yu J, Wang T, Lu N, Wang H, Zhou C. Antiviral activity of baicalin against influenza A (H1N1/H3N2) virus in cell culture and in mice and its inhibition of neuraminidase. Arch Virol. 2014; 159:3269- 3278.

Kitamura K, Honda M, Yoshizaki H, Yamamoto S, Nakane H, Fukushima M, Ono K, Tokunaga T. Baicalin, an inhibitor of HIV-1 production in vitro. Antiviral Res. 1998; 37: 131-140.

Li BQ, Fu T, Dongyan Y, Mikovits JA, Ruscetti FW, Wang JM. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophy Res Comm. 2000; 276:534- 538.

Li X, Liu Y, Wu T, Jin Y, Cheng J, Wan C, Qian W, Xing F, Shi W. The antiviral effect of baicalin on enterovirus 71 in vitro. Viruses 2015; 7:4756-4771.

Oo A, Rausalu K, Merits A, Higgs S, Vanlandingham D, Bakar SA, Zandi K. Deciphering the potential of baicalin as an antiviral agent for Chikungunya virus infection. Antiviral Res. 2018; 150:101-111.

Chen F, Chan KH, Jiang Y, Kao RY, Lu HT, Fan KW,Cheng VC, Tsui WH, Hung IF, Lee TS, Guan Y. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. 2004; 31:69-75.

Liu AL, Wang HD, Lee SM, Wang YT, Du GH. Structure– activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg Med Chem. 2008; 16:7141-7147.

Liu R, Li X, Wei J, Liu S, Chang Y, Zhang J, Zhang J, Zhang X, Fuhr U, Taubert M, Tian X. A single dose of baicalin has no clinically significant effect on the pharmacokinetics of cyclosporine A in healthy chinese volunteers. Front Pharmacol. 2019; 10:518.

Tan Y, Yu R, Pezzuto JM. Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation. Clin Cancer Res. 2003; 9:2866-2875.

Fulda S. Betulinic acid for cancer treatment and prevention. Int J Mol Sci. 2008; 9:1096-1107.

Chintharlapalli S, Papineni S, Lei P, Pathi S, Safe S. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and-independent downregulation of specificity proteins (Sp) transcription factors. BMC cancer. 2011; 11:371.

Innocente AM, Silva GN, Cruz LN, Moraes MS, Nakabashi M, Sonnet P, Gosmann G, Garcia CR, Gnoatto SC. Synthesis and antiplasmodial activity of betulinic acid and ursolic acid analogues. Molecules. 2012; 17:12003-12014.

Tsai JC, Peng WH, Chiu TH, Lai SC, Lee CY. Antiinflammatory effects of Scoparia dulcis L. and betulinic acid. Am J Chinese Med. 2011; 39:943-956.

Aiken C, Chen CH. Betulinic acid derivatives as HIV-1 antivirals. Trends Mol Med. 2005; 11:31-36.

Pavlova NI, Savinova OV, Nikolaeva SN, Boreko EI, Flekhter OB. Antiviral activity of betulin, betulinic and betulonic acids against some enveloped and non-enveloped viruses. Fitoter. 2003; 74:489-492.

Ryu SY, Lee CK, Lee CO, Kim HS, Zee OP. Antiviral triterpenes from Prunella vulgaris. Arch Pharm Res. 1992; 15:242-245.

Kazakova OB, Gul’nara VG, Yamansarov EY, Tolstikov GA. Betulin and ursolic acid synthetic derivatives as inhibitors of Papilloma virus. Bioorg Med Chem Lett. 2010; 20:4088-4090.

Nash RJ, Fellows LE, Dring JV, Stirton CH, Carter D, Hegarty MP, Bell EA. Castanospermine in Alexa species. Phytochem. 1988; 27:1403-1404.

Saul R, Chambers JP, Molyneux RJ, Elbein AD. Castanospermine, a tetrahydroxylated alkaloid that inhibits beta-glucosidase and beta- lucocerebrosidase [isolated from the seeds of the Australian legume, Castanospermum australe]. Arch Biochem Biophy. 1983; 221:593-597.

Walker BD, Kowalski M, Goh WC, Kozarsky K, KriegerM, Rosen C, Rohrschneider L, Haseltine WA, Sodroski J. Inhibition of human immunodeficiency virus syncytiumformation and virus replication by castanospermine. Proc Nat Acad Sci. 1987; 84:8120-8124.

Whitby K, Pierson TC, Geiss B, Lane K, Engle M, Zhou Y, Doms RW, Diamond MS. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. JVirol. 2005; 79:8698-8706.

Pan YT, Hori H, Saul R, Sanford BA, Molyneux RJ, ElbeinAD. Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin. Biochem. 1983; 22:3975-3984.

Liu PS, Sunkara SP, Bowlin TL, inventors; Aventis Inc,assignee. Anti-retroviral castanospermine esters. United States patent US 5,004,746. 1991.

Chen PS, Li JH. Chemopreventive effect of punicalagin, a novel tannin component isolated from Terminalia catappa, on H-ras-transformed NIH3T3 cells. Toxicol Lett. 2006;163:44-53.

Hamada SI, Kataoka T, Woo JT, Yamada A, Yoshida T, Nishimura T, Otake N, Nagai K. Immunosuppressive effects of gallic acid and chebulagic acid on CTL-mediatedcytotoxicity. Bio Pharm Bull. 1997; 20:1017-1019.

Kinoshita S, Inoue Y, Nakama S, Ichiba T, Aniya Y. Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannincorilagin. Phytomed. 2007; 14:755-762.

Sasidharan I, Sundaresan A, Nisha VM, Kirishna MS, Raghu KG, Jayamurthy P. Inhibitory effect of Terminalia chebula Retz. fruit extracts on digestive enzyme related todiabetes and oxidative stress. J Enz Inhib Med Chem. 2012;27:578-586.

Pham AT, Malterud KE, Paulsen BS, Diallo D,Wangensteen H. α-Glucosidase inhibition, 15-lipoxygenase inhibition, and brine shrimp toxicity of extracts and isolatedcompounds from Terminalia macroptera leaves. PharmBio. 2014; 52:1166-1169.

Lin LT, Chen TY, Chung CY, Noyce RS, Grindley TB, McCormick C, Lin TC, Wang GH, Lin CC, Richardson CD. )507© 2020 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License Hydrolyzable tannins (chebulagic acid and punicalagin)

target viral glycoprotein-glycosaminoglycan interactions toinhibit herpes simplex virus 1 entry and cell-to-cell spread.J Virol. 2011; 85:4386-4398.

Yang Y, Xiu J, Liu J, Zhang L, Li X, Xu Y, Qin C, ZhangL. Chebulagic acid, a hydrolyzable tannin, exhibitedantiviral activity in vitro and in vivo against humanenterovirus 71. Int J Mol Sci. 2013; 14:9618-9627.

Nonaka GI, Nishioka I, Nishizawa M, Yamagishi T,Kashiwada Y, Dutschman GE, Bodner AJ, Kilkuskie RE,Cheng YC, Lee KH. Anti-AIDS agents, 2: inhibitory effectof tannins on HIV reverse transcriptase and HIV replicationin H9 lymphocyte cells. J Nat Prod. 1990; 53:587-595.

Li P, Du R, Wang Y, Hou X, Wang L, Zhao X, Zhan P, LiuX, Rong L, Cui Q. Identification of Chebulinic Acid andChebulagic Acid as Novel Influenza Viral NeuraminidaseInhibitors. Front Microbiol. 2020; 11:182.

Lin LT, Chen TY, Lin SC, Chung CY, Lin TC, Wang GH,Anderson R, Lin CC, Richardson CD. Broad-spectrumantiviral activity of chebulagic acid and punicalagin againstviruses that use glycosaminoglycans for entry. BMCMicrobiol. 2013; 13:187.

Kesharwani A, Polachira SK, Nair R, Agarwal A, MishraNN, Gupta SK. Anti-HSV-2 activity of Terminalia chebulaRetz extract and its constituents, chebulagic and chebulinicacids. BMC Compl Altern Med. 2017; 17:110.

Dittmann E, Neilan B, Börner T. Molecular biology of peptide and polyketide biosynthesis in cyanobacteria. AppMicrobiol Biotech. 2001; 57:467-473.

Bewley CA, Gustafson KR, Boyd MR, Covell DG, Bax A,Clore GM, Gronenborn AM. Solution structure ofcyanovirin-N, a potent HIV-inactivating protein. Nat StruBio. 1998; 5:571-578.

Dey B, Lerner DL, Lusso P, Boyd MR, Elder JH, BergerEA. Multiple antiviral activities of cyanovirin-N: blockingof human immunodeficiency virus type 1 gp120 interactionwith CD4 and coreceptor and inhibition of diverseenveloped viruses. J Virol. 2000; 74:4562-4569.

Tsai CC, Emau P, Jiang Y, Agy MB, Shattock RJ, SchmidtA, Morton WR, Gustafson KR, Boyd MR. Cyanovirin-Ninhibits AIDS virus infections in vaginal transmissionmodels. AIDS Res Hum Retroviruses. 2004; 20:11-18.

Bolmstedt AJ, O'Keefe BR, Shenoy SR, McMahon JB,Boyd MR. Cyanovirin-N defines a new class of antiviralagent targeting N-linked, high-mannose glycans in anoligosaccharide-specific manner. Mol Pharmacol. 2001;59:949-954.

Helle F, Wychowski C, Vu-Dac N, Gustafson KR, VoissetC, Dubuisson J. Cyanovirin-N inhibits hepatitis C virusentry by binding to envelope protein glycans. J Bio Chem.2006; 281:25177-25183.

O'Keefe BR, Smee DF, Turpin JA, Saucedo CJ, GustafsonKR, Mori T, Blakeslee D, Buckheit R, Boyd MR. Potentanti-influenza activity of cyanovirin-N and interactions withviral hemagglutinin. Antimicrob Agents Chemother. 2003;47:2518-2525.

Barrientos LG, O’Keefe BR, Bray M, Sanchez A,Gronenborn AM, Boyd MR. Cyanovirin-N binds to theviral surface glycoprotein, GP1, 2 and inhibits infectivity ofEbola virus. Antiviral Res. 2003; 58:47-56.

Lee TY, Park YK, Jang BC. Anti-adipogenic Effect andMechanism in 3T3-L1 Preadipocytes by Cyclosporin A, anImmunosuppressant. Quant Bio-Sci. 2018; 37:57-63.

Kanitakis J, Thivolet J. Cyclosporine: animmunosuppressant affecting epithelial cell proliferation.Arch Derm. 1990; 126:369-375.

High KP. The antimicrobial activities of cyclosporine,FK506, and rapamycin. Transplant. 1994; 57:1689-1700.131. Rosmarin DM, Lebwohl M, Elewski BE, Gottlieb AB.Cyclosporine and psoriasis: 2008 national psoriasisfoundation consensus conference. J Am Acad Derm. 2010;

:838-853.

Vidhi V. Shah, BA, Shivani P. Reddy, BS, Elaine J. Lin,MD, Jashin J. Wu, MD. Cyclosporine: In Therapy forSevere Psoriasis E-Book:. Ed: Wu JJ, Feldman SR,Lebwohl MG Expert Consult. Elsevier Health Sci. 2016.63-73 p.

Franke EK, Luban J. Inhibition of HIV-1 replication bycyclosporine A or related compounds correlates with theability to disrupt the Gag–cyclophilin A interaction. Virol.1996; 222:279-282.

Sokolskaja E, Olivari S, Zufferey M, Strambio-De-CastilliaC, Pizzato M, Luban J. Cyclosporine blocks incorporationof HIV-1 envelope glycoprotein into virions. J Virol. 2010;84:4851-4855.

Firpi RJ, Zhu H, Morelli G, Abdelmalek MF, Soldevila‐Pico C, Machicao VI, Cabrera R, Reed AI, Liu C, NelsonDR. Cyclosporine suppresses hepatitis C virus in vitro andincreases the chance of a sustained virological responseafter liver transplantation. Liver Transplant. 2006; 12:51-

Fernandes F, Israr-ul HA, Striker R. Cyclosporine inhibits adirect interaction between cyclophilins and hepatitis CNS5A. PLoS One. 2010; 5(3):e9815.

Ciesek S, Steinmann E, Wedemeyer H, Manns MP, Neyts J,Tautz N, Madan V, Bartenschlager R, von Hahn T,Pietschmann T. Cyclosporine A inhibits hepatitis C virusnonstructural protein 2 through cyclophilin A. Hepatology.2009; 50:1638-1645.

Xia WL, Shen Y, Zheng SS. Inhibitory effect ofcyclosporine A on hepatitis B virus replication in vitro andits possible. Hepatobil Pancreat Dis Int. 2005; 4:18-22.

Liu X, Zhao Z, Li Z, Xu C, Sun L, Chen J, Liu W.Cyclosporin A inhibits the influenza virus replicationthrough cyclophilin A-dependent and-independentpathways. PLoS One. 2012; 7(5):e37277

Carbajo-Lozoya J, Ma-Lauer Y, Malešević M, TheuerkornM, Kahlert V, Prell E, von Brunn B, Muth D, Baumert TF,Drosten C, Fischer G. Human coronavirus NL63 replicationis cyclophilin A-dependent and inhibited by nonimmunosuppressive cyclosporine A-derivatives includingAlisporivir. Virus Res. 2014; 184:44-53.

McKenzie RC, Epand RM, Johnson DC. Cyclosporine Ainhibits herpes simplex virus-induced cell fusion but notvirus penetration into cells. Virol. 1987; 159:1-9.

Lommer MJ. Efficacy of cyclosporine for chronic,refractory stomatitis in cats: a randomized, placebocontrolled, double-blinded clinical study. J Vet Den. 2013;30:8-17.

Castro AP, Carvalho TM, Moussatché N, Damaso CR.Redistribution of cyclophilin A to viral factories duringvaccinia virus infection and its incorporation into matureparticles. J Virol. 2003; 77:9052-9068.

Kawasaki H, Mocarski ES, Kosugi I, Tsutsui Y.Cyclosporine inhibits mouse cytomegalovirus infection viaa cyclophilin-dependent pathway specifically in neuralstem/progenitor cells. J Virol. 2007; 81:9013-9023.

Bienkowska-Haba M, Williams C, Kim SM, Garcea RL,Sapp M. Cyclophilins facilitate dissociation of the humanpapillomavirus type 16 capsid protein L1 from the L2/DNAcomplex following virus entry. J Virol. 2012; 86:9875-9887.

Lieberherr C, Zhang G, Grafen A, Singethan K, Kendl S,Vogt V, Maier J, Bringmann G, Schneider-Schaulies J. Theplant-derived naphthoquinone Droserone inhibits in vitromeasles virus infection. Planta Med. 2017; 83:232-238.

Cooke RG and Segal W. Colouring matters of Australianplants. I. The structure of droserone. Austr J Chem. 1950;3:628-634

)508© 2020 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License

Higa M, Ogihara K, Yogi S. Bioactive naphthoquinonederivatives from Diospyros maritima Blume. Chem PharmBull. 1998; 46:1189-1193.

Krychowiak M, Kawiak A, Narajczyk M, Borowik A,Królicka A. Silver nanoparticles combined withnaphthoquinones as an effective synergistic strategy againstStaphylococcus aureus. Front Pharmacol. 2018; 9:816.

Likhitwitayawuid K, Kaewamatawong R, Ruangrungsi N,Krungkrai J. Antimalarial naphthoquinones from Nepenthesthorelii. Planta med. 1998; 64:237-241.

Gonzaga DT, Gomes RS, Marra RK, Silva FC, GomesMW, Ferreira DF, Santos R, Pinto A, Ratcliffe NA, CirneSantos CC, Barros CS. Inhibition of Zika Virus Replicationby Synthetic Bis-Naphthoquinones. J Braz Chem Soc.2019; 30:1697-1706.

Polonik SG, Krylova NV, Kompanets GG, Iunikhina OV,Sabutski YE. Synthesis and Screening of Anti-HSV-1Activity of Thioglucoside Derivatives of NaturalPolyhydroxy-1, 4-Naphthoquinones. Nat Prod Comm.2019; 14:1934578X19860672.

Gallelli L. Escin: a review of its anti-edematous, antiinflammatory, and venotonic properties. Drug Des DevTher. 2019; 13:3425.

Domanski D, Zegrocka-Stendel O, Perzanowska A,Dutkiewicz M, Kowalewska M, Grabowska I, Maciejko D,Fogtman A, Dadlez M, Koziak K. Molecular mechanismfor cellular response to β-escin and its therapeuticimplications. PloS one. 2016; 11(10):e0158765

Yuan SY, Cheng CL, Wang SS, Ho HC, Chiu KY, ChenCS, Chen CC, Shiau MY, Ou YC. Escin induces apoptosisin human renal cancer cells through G2/M arrest andreactive oxygen species-modulated mitochondrialpathways. Oncol Rep. 2017; 37:1002-1010.

Kim JW, Cho H, Kim E, Shim SH, Yang JL, Oh WK.Antiviral escin derivatives from the seeds of Aesculusturbinata Blume (Japanese horse chestnut). Bioorg MedChem Lett. 2017; 27:3019-3025.

Yang XW, Zhao J, Cui YX, Liu XH, Ma CM, Hattori M,Zhang LH. Anti-HIV-1 protease triterpenoid saponins fromthe seeds of Aesculus chinensis. J Nat Prod. 1999; 62:1510-1513.

Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YS, HsuHH, Huang HC, Wu D, Brik A, Liang FS. Small moleculestargeting severe acute respiratory syndrome humancoronavirus. Pro Natl Acad Sci. 2004; 101:10012-10017.

Piao S, Kang M, Lee YJ, Choi WS, Chun YS, Kwak C,Kim HH. Cytotoxic effects of escin on human castrationresistant prostate cancer cells through the induction ofapoptosis and G2/M cell cycle arrest. Urol. 2014;84:982.e1-982.e7.

Walter ED. Genistin (an isoflavone glucoside) and itsaglucone, genistein, from soybeans. J Am Chem Soc. 1941;63:3273-3276.

Bitto A, Arcoraci V, Alibrandi A, D’Anna R, Corrado F,Atteritano M, Minutoli L, Altavilla D, Squadrito F. Visfatincorrelates with hot flashes in postmenopausal women withmetabolic syndrome: effects of genistein. Endocr. 2017;55:899-906.

Banerjee S, Li Y, Wang Z, Sarkar FH. Multi-targetedtherapy of cancer by genistein. Cancer Lett. 2008; 269:226-242.

Shahmohammadi A, Rousta AM, Azadi MR, FahanikBabaei J, Baluchnejadmojarad T, Roghani M. Soyisoflavone genistein attenuates lipopolysaccharide-inducedcognitive impairments in the rat via exerting anti-oxidativeand anti-inflammatory effects. Cytokine 2018; 104:151-

Arabyan E, Hakobyan A, Kotsinyan A, Karalyan Z,Arakelov V, Arakelov G, Nazaryan K, Simonyan A,Aroutiounian R, Ferreira F, Zakaryan H. Genistein inhibitsAfrican swine fever virus replication in vitro by disruptingviral DNA synthesis. Antiviral Res. 2018; 156:128-137.

LeCher JC, Diep N, Krug PW, Hilliard JK. Genistein hasantiviral activity against herpes b virus and actssynergistically with antiviral treatments to reduce effectivedose. Viruses 2019; 11:499.

Wei B, Cha SY, Kang M, Kim YJ, Cho CW, Rhee YK,Hong HD, Jang HK. Antiviral activity of Chongkukjangextracts against influenza A virus in vitro and in vivo. JEthnic Foods. 2015; 2:47-51.

Gozlan J, Lathey JL, Spector SA. Humanimmunodeficiency virus type 1 induction mediated bygenistein is linked to cell cycle arrest in G2. J Virol. 1998;72:8174-8180.

Kolokoltsov AA, Adhikary S, Garver J, Johnson L, DaveyRA, Vela EM. Inhibition of Lassa virus and Ebola virusinfection in host cells treated with the kinase inhibitorsgenistein and tyrphostin. Arch Virol. 2012; 157:121-127.

Qian K, Gao AJ, Zhu MY, Shao HX, Jin WJ, Ye JQ, QinAJ. Genistein inhibits the replication of avian leucosis virussubgroup J in DF-1 cells. Virus Res. 2014; 192:114-120.

Kubo Y, Ishimoto A, Amanuma H. Genistein, a proteintyrosine kinase inhibitor, suppresses the fusogenicity ofMoloney murine leukemia virus envelope protein in XCcells. Arch Virol. 2003; 148:1899-1914.

Perera A, Ton SH, Palanisamy UD. Perspectives ongeraniin, a multifunctional natural bioactive compound.Trends Food Sci Tech. 2015; 44:243-257.

Notka F, Meier GR, Wagner R. Inhibition of wild-typehuman immunodeficiency virus and reverse transcriptaseinhibitor-resistant variants by Phyllanthus amarus. AntiviralRes. 2003; 58:175-186.

Yang CM, Cheng HY, Lin TC, Chiang LC, Lin CC. The invitro activity of geraniin and 1, 3, 4, 6-tetra-O-galloyl-β-dglucose isolated from Phyllanthus urinaria against herpessimplex virus type 1 and type 2 infection. JEthnopharmacol. 2007; 110:555-558.

Li J, Huang H, Zhou W, Feng M, Zhou P. Anti-hepatitis Bvirus activities of Geranium carolinianum L. extracts andidentification of the active components. Bio Pharm Bull.2008; 31:743-747.

Yang Y, Zhang L, Fan X, Qin C, Liu J. Antiviral effect ofgeraniin on human enterovirus 71 in vitro and in vivo.Bioorg Med Chem Lett. 2012; 22:2209-2211.

Xie J, Zhang Y, Wang W. HPLC analysis of glycyrrhizinand licochalcone a in Glycyrrhiza inflata from Xinjiang(China). Chem Nat Comp. 2010; 46:148-151.

Baba M, Shigeta S. Antiviral activity of glycyrrhizin againstvaricella-zoster virus in vitro. Antiviral Res. 1987; 7:99-107.

Hirabayashi K, Iwata S, Matsumoto H, Mori T, Shibata S,Baba M, Ito M, Shigeta S, Nakashima H, Yamamato N.Antiviral activities of glycyrrhizin and its modifiedcompounds against human immunodeficiency virus type 1(HIV-1) and herpes simplex virus type 1 (HSV-1) in vitro.

Chem Pharm Bull. 1991; 39:112-115.

Matsumoto Y, Matsuura T, Aoyagi H, Matsuda M, HmweSS, Date T, Watanabe N, Watashi K, Suzuki R, Ichinose S,Wake K. Antiviral activity of glycyrrhizin against hepatitisC virus in vitro. PloS one. 2013; 8:e68992

Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H,Doerr HW. Glycyrrhizin, an active component of liquoriceroots, and replication of SARS-associated coronavirus.Lancet. 2003; 361:2045-2046.

Hoever G, Baltina L, Michaelis M, Kondratenko R, BaltinaL, Tolstikov GA, Doerr HW, Cinatl J. Antiviral Activity ofGlycyrrhizic Acid Derivatives against SARS− Coronavirus.J Med Chem. 2005; 48:1256-1259.

O'Brian CA, Ward NE, Vogel VG. Inhibition of proteinkinase C by the 12-O-tetradecanoylphorbol-13-acetate )509

© 2020 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License

Harada S, Karino A, Shimoyama Y, Shamsa F, Ohtsuki K.Identification of glycyrrhizin-binding protein kinase ascasein kinase II and characterization of its associatedphosphate acceptors in mouse liver. Biochem Biophy ResComm. 1996; 227:102-109.

Lee J, Jung E, Park J, Jung K, Park E, Kim J, Hong S, ParkJ, Park S, Lee S, Park D. Glycyrrhizin inducesmelanogenesis by elevating a cAMP level in b16 melanomacells. J Inv Derm. 2005; 124:405-411.

Yi H, Nakashima I, Isobe KI. Enhancement of nitric oxideproduction from activated macrophages by glycyrrhizin.Am J Chinese Med. 1996; 24:271-278.

Akaike T. Role of free radicals in viral pathogenesis andmutation. Rev Med Virol. 2001; 11:87-101.

Zaki MH, Akuta T, Akaike T. Nitric oxide-induced nitrative stress involved in microbial pathogenesis. J Pharmacol Sci. 2005; 98:117-129.

Akaike T, Maeda H. Nitric oxide and virus infection. Immunol. 2000; 101:300-308.

Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 2015; 36:161-178.

Miyake K, Tango T, Ota Y, Mitamura K, Yoshiba M, Kako M, Hayashi S, Ikeda Y, Hayashida N, Iwabuchi S, Sato Y. Efficacy of Stronger Neo‐Minophagen C compared between two doses administered three times a week on patients with chronic viral hepatitis. J Gastroenterol Hepatol. 2002; 17:1198-1204.

Urizar NL, Moore DD. GUGULIPID: a natural cholesterollowering agent. Annu Rev Nut. 2003; 23:303-313.

Gebhard C, Stämpfli SF, Gebhard CE, Akhmedov A, Breitenstein A, Camici GG, Holy EW, Lüscher TF, Tanner FC. Guggulsterone, an anti-inflammatory phytosterol, inhibits tissue factor and arterial thrombosis. Basic Res Cardiol. 2009; 104:285-294.

Almazari I and Surh YJ. Cancer chemopreventive and therapeutic potential of guggulsterone. InNatural Products in Cancer Prevention and Therapy, Springer, Berlin, Heidelberg. 2012. 35-60 p.

Bouslama L, Kouidhi B, Alqurashi YM, Chaieb K, Papetti A. Virucidal Effect of Guggulsterone Isolated from Commiphora gileadensis. Planta Med. 2019; 85:1225-1232.

Scholtes C, Diaz O, Icard V, Kaul A, Bartenschlager R, Lotteau V, André P. Enhancement of genotype 1 hepatitis C virus replication by bile acids through FXR. J Hepatol. 2008; 48:192-199.

Shivanna V, Kim Y, Chang KO. The crucial role of bile acids in the entry of porcine enteric calicivirus. Virol. 2014; 456:268-278.

Park JY, Jeong HJ, Kim JH, Kim YM, Park SJ, Kim D, Park KH, Lee WS, Ryu YB. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Bio Pharm Bull. 2012; b12-00623.

Farrand L, Kim JY, Byun S, Im-aram A, Lee J, Suh JY, Lee KW, Lee HJ, Tsang BK. The diarylheptanoid hirsutenone sensitizes chemoresistant ovarian cancer cells to cisplatin via modulation of apoptosis-inducing factor and X-linked inhibitor of apoptosis. J Bio Chem. 2014; 289:1723-1731.

Joo SS, Kim SG, Choi SE, Kim YB, Park HY, Seo SJ, Choi YW, Lee MW, Lee DI. Suppression of T cell activation by hirsutenone, isolated from the bark of Alnus japonica, and its therapeutic advantages for atopic dermatitis. Eur J Pharmacol. 2009; 614:98-105.

Lee DI, Jang SK, Da WP, Kim ST, Park JS, Jo BR, Park JY, Park HY, Joo SS. Diarylheptanoid hirsutenone attenuates osteoclastogenesis by suppressing IFNγ and NF- κB signaling in Th1 and preosteoclastic cells. Bio Pharm Bull. 2017; 40:630-637.

Ganapathy G, Preethi R, Moses JA, Anandharamakrishnan C. Diarylheptanoids as nutraceutical: A review. Biocatal Agric Biotech. 2019; 19:101109.

Dong ZW, Yuan YF. Juglanin suppresses fibrosis and inflammation response caused by LPS in acute lung injury. Int J Mol Med. 2018; 41:3353-3365.

Xu F, Guan H, Li G, Liu H. LC method for analysis of three flavonols in rat plasma and urine after oral administration of Polygonum aviculare extract. Chromatogr. 2009; 69:1251.

Zhang FX and Xu RS. Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson’s disease and cell culture via inactivating TLR4/NF-κB pathway. Biomed Pharmacother. 2018; 97:1011-1019.

Sun ZL, Dong JL, Wu J. Juglanin induces apoptosis and autophagy in human breast cancer progression via ROS/JNK promotion. Biomed Pharmacother. 2017; 85:303- 312.

Schwarz S, Sauter D, Wang K, Zhang R, Sun B, Karioti A, Bilia AR, Efferth T, Schwarz W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med. 2014; 80:177-182.

Yang Y, Yang Z, Liu J, Wu F, Yuan X. Screening of potential anti-influenza agents from Juglans mandshurica Maxim. by docking and MD simulations. Digest J Nanomat Biostruc (DJNB). 2015; 10:43-57.

Krawczyk JM, Völler GH, Krawczyk B, Kretz J, Brönstrup M, Süssmuth RD. Heterologous expression and engineering studies of labyrinthopeptins, class III lantibiotics from Actinomadura namibiensis. Chem Bio. 2013; 20:111-122.

Férir G, Petrova MI, Andrei G, Huskens D, Hoorelbeke B, Snoeck R, Vanderleyden J, Balzarini J, Bartoschek S, Brönstrup M, Süssmuth RD. The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and antiHSV activity with potential for microbicidal applications.

PloS one. 2013; 8:e64010.

Prochnow H, Rox K, Birudukota NS, Weichert L, Hotop SK, Klahn P, Mohr K, Franz S, Banda DH, Blockus S, Schreiber J. Labyrinthopeptins exert broad-spectrum antiviral activity through lipid-binding-mediated virolysis. J Virol. 2020; 94:e01471-19.

Brönstrup M, Prochnow HP, Birudukota NS, Schulz T, Messerle M, Pietschmann T, Haid S, Blockus S, LaqmaniGoffinet C, Franz S, Banda H, inventors. Labyrinthopeptins as anti-viral agents. United States patent application US 16/665,956. 2020.

Hoorelbeke B, Huskens D, Férir G, François KO, Takahashi A, Van Laethem K, Schols D, Tanaka H, Balzarini J. Actinohivin, a broadly neutralizing prokaryotic lectin, inhibits HIV-1 infection by specifically targeting highmannose-type glycans on the gp120 envelope. Antimicrobial Agents Chemother. 2010; 54:3287-3301.

Favacho AR, Cintra EA, Coelho LC, Linhares MI. In vitro activity evaluation of Parkia pendula seed lectin against human cytomegalovirus and herpes virus 6. Biologicals 2007; 35:189-194.

Yang DW, Haraguchi Y, Iwai H, Handa A, Shimizu N, Hoshino H. Inhibition of adsorption of human T‐cell‐ leukemia virus type 1 by a plant lectin, wheat‐germ agglutinin. Int J Cancer 1994; 56:100-105.

Vijgen L, Keyaerts E, Van Damme E, Peumans W, De Clercq E, Balzarini J, Van Ranst M. Antiviral effect of plant compounds of the Alliaceae family against the SARS coronavirus. Antiviral Res. 2004; 62:A76.

Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink H, Balzarini J, Van Ranst M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res. 2007; 75:179-187.

Ooi LS, Ho WS, Ngai KL, Tian L, Chan PK, Sun SS, Ooi VE. Narcissus tazetta lectin shows strong inhibitory effects against respiratory syncytial virus, influenza A (H1N1, ) 510 © 2020 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License

François KO and Balzarini J. Potential of carbohydrate‐ binding agents as therapeutics against enveloped viruses. Med Res Rev. 2012; 32:349-387.

Coleta M, Campos MG, Cotrim MD, de Lima TC, da Cunha AP. Assessment of luteolin (3′, 4′, 5, 7- tetrahydroxyflavone) neuropharmacological activity. Behav Brain Res. 2008; 189:75-82.

Leung HW, Kuo CL, Yang WH, Lin CH, Lee HZ. Antioxidant enzymes activity involvement in luteolininduced human lung squamous carcinoma CH27 cell apoptosis. Eur J Pharmacol. 2006; 534:12-18.

Funakoshi-Tago M, Nakamura K, Tago K, Mashino T, Kasahara T. Anti-inflammatory activity of structurally related flavonoids, Apigenin, Luteolin and Fisetin. Int Immunopharmacol. 2011; 11:1150-1159.

Bai L, Nong Y, Shi Y, Liu M, Yan L, Shang J, Huang F, Lin Y, Tang H. Luteolin inhibits hepatitis B virus replication through extracellular signal-regulated kinasemediated down-regulation of hepatocyte nuclear factor 4α expression. Mol Pharm. 2016; 13:568-577.

Yan H, Ma L, Wang H, Wu S, Huang H, Gu Z, Jiang J, Li Y. Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression. J Nat Med. 2019; 73:487-496.

Fan W, Qian S, Qian P, Li X. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res. 2016; 220:112-116.

Peng M, Watanabe S, Chan KW, He Q, Zhao Y, Zhang Z, Lai X, Luo D, Vasudevan SG, Li G. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Res. 2017; 143:176-185.

Xu L, Su W, Jin J, Chen J, Li X, Zhang X, Sun M, Sun S, Fan P, An D, Zhang H. Identification of luteolin as enterovirus 71 and coxsackievirus A16 inhibitors through reporter viruses and cell viability-based screening. Viruses. 2014; 6:2778-2295.

Mehla R, Bivalkar-Mehla S, Chauhan A. A flavonoid, uteolin, cripples HIV-1 by abrogation of tat function. Plos one. 2011; 6:e27915.

Wu CC, Fang CY, Hsu HY, Chen YJ, Chou SP, Huang SY, Cheng YJ, Lin SF, Chang Y, Tsai CH, Chen JY. Luteolin inhibits Epstein-Barr virus lytic reactivation by repressing the promoter activities of immediate-early genes. Antiviral Res. 2016; 132:99-110.

Dai C, Ma Y, Zhao Z, Zhao R, Wang Q, Wu Y, Cao Z, Li W. Mucroporin, the first cationic host defense peptide from the venom of Lychas mucronatus. Antimicrob Agents Chemother. 2008; 52:3967-3972.

Li Q, Zhao Z, Zhou D, Chen Y, Hong W, Cao L, Yang J, Zhang Y, Shi W, Cao Z, Wu Y. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides. 2011; 32:1518-1525.

Zhao Z, Hong W, Zeng Z, Wu Y, Hu K, Tian X, Li W, Cao Z. Mucroporin-M1 inhibits hepatitis B virus replication by activating the mitogen-activated protein kinase (MAPK) pathway and down-regulating HNF4α in vitro and in vivo. J Bio Chem. 2012; 287:30181-30190.

Franklin TJ and Cook JM. The inhibition of nucleic acid synthesis by mycophenolic acid. Biochem J. 1969; 113:515- 524.

Mitsui A and Suzuki S. Immunosuppressive effect of mycophenolic acid. J Antibiotics 1969; 22: 358-363.

Noto T, Sawada M, Ando K, Koyama K. Some biological properties of mycophenolic acid. J Antibiotics. 1969; 22:165-169.

Domhan S, Muschal S, Schwager C, Morath C, Wirkner U, Ansorge W, Maercker C, Zeier M, Huber PE, Abdollahi A. Molecular mechanisms of the antiangiogenic and antitumor effects of mycophenolic acid. Mol Cancer Ther. 2008; 7:1656-1668.

Planterose DN. Antiviral and cytotoxic effects of mycophenolic acid. J Gen Virol. 1969; 4:629-630.

Diamond MS, Zachariah M, Harris E. Mycophenolic acid inhibits dengue virus infection by preventing replication of viral RNA. Virol. 2002; 304:211-221.

Smee DF, Bray M, Huggins JW. Antiviral activity and mode of action studies of ribavirin and mycophenolic acid against orthopoxviruses in vitro. Antiviral Chem Chemother. 2001; 12:327-335.

Wang Y, Zhou X, Debing Y, Chen K, Van Der Laan LJ, Neyts J, Janssen HL, Metselaar HJ, Peppelenbosch MP, Pan Q. Calcineurin inhibitors stimulate and mycophenolic acid inhibits replication of hepatitis E virus. Gastroenterol. 2014; 146:1775-1783.

Chapuis AG, Rizzardi GP, D'agostino C, Attinger A, Knabenhans C, Fleury S, Acha-Orbea H, Pantaleo G. Effects of mycophenolic acid on human immunodeficiency virus infection in vitro and in vivo. Nat Med. 2000; 6:762- 768.

Henry SD, Metselaar HJ, Lonsdale RC, Kok A, Haagmans BL, Tilanus HW, Van der Laan LJ. Mycophenolic acid inhibits hepatitis C virus replication and acts in synergy with cyclosporin A and interferon-α. Gastroenterol. 2006; 131:1452-1462.

Sebastian L, Madhusudana SN, Ravi V, Desai A. Mycophenolic acid inhibits replication of Japanese encephalitis virus. Chemother. 2011; 57:56-61.

Robertson CM, Hermann LL, Coombs KM. Mycophenolic acid inhibits avian reovirus replication. Antiviral Res. 2004; 64:55-61.

Cheng KW, Cheng SC, Chen WY, Lin MH, Chuang SJ, Cheng IH, Sun CY, Chou CY. Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antiviral Res. 2015; 115:9-16.

Kassuya CA, Silvestre A, Menezes-de-Lima Jr O, Marotta DM, Rehder VL, Calixto JB. Anti-inflammatory and antiallodynic actions of the lignan niranthin isolated from Phyllanthus amarus: evidence for interaction with platelet activating factor receptor. Eur J Pharmacol. 2006; 546:182-188.

Huang RL, Huang YL, Ou JC, Chen CC, Hsu FL, Chang C. Screening of 25 compounds isolated from Phyllanthus species for anti‐human hepatitis B virus in vitro. Phytother Res. 2003; 17:449-453.

Liu S, Wei W, Shi K, Cao X, Zhou M, Liu Z. In vitro and in vivo anti-hepatitis B virus activities of the lignan niranthin isolated from Phyllanthus niruri L. J Ethnopharmacol. 2014; 155:1061-1067.

Loan LT, Uyen NH, Phuong VH, Cuong DV, Anh PV, Hanh NN, Anh LT. Herbal Extract Effects on White Spot Syndrome Virus (WSSV) in Shrimp (Penaeus monodon). The Israeli Journal of Aquaculture -Bamidgeh, 2009; 61:1- 3.

Canel C, Moraes RM, Dayan FE, Ferreira D. Podophyllotoxin. Phytochemistry. 2000; 54: 115-120.

Inamori Y, Kubo M, Tsujibo H, Ogawa M, Baba K, Kozawa M, Fujita E. The biological activities of podophyllotoxin compounds. Chem Pharm Bull 1986; 34:3928-3932.

Abubacker MN, Vasantha S. Antibacterial activity of ethanolic leaf extract of Rauwolfia tetraphylla (Apocyanaceae) and its bioactive compound reserpine. Drug Invent Today. 2011; 3:16-17.

Gordaliza M, Castro MA, García‐Grávalos MD, Ruiz P, Del Corral JM, Feliciano AS. Antineoplastic and antiviral activities of podophyllotoxin related lignans. Archiv der Pharmazie. 1994; 327:175-179.

Castro MA, del Corral JM, Gordaliza M, Gomez-Zurita MA, de La Puente ML, Betancur-Galvis LA, Sierra J, San Feliciano A. Synthesis, cytotoxicity and antiviral activity of podophyllotoxin analogues modified in the E-ring. Eur J Med Chem. 2003; 38:899-911.

Chen SW, Wang YH, Jin Y, Tian X, Zheng YT, Luo DQ, Tu YQ. Synthesis and anti-HIV-1 activities of novel podophyllotoxin derivatives. Bioorg Med Chem Lett. 2007; 17:2091-2095.

Ternaux JP and Portalier P. Effect of quercetine on survival and morphological properties of cultured embryonic rat spinal motoneurones. Neurosci Lett. 2002; 332:33-36.

Pitoyo FL and Fatmawati H. The effect of quercetine to reduced trigliceride and blood glucose level in animal model diet-induced obesity. J Med Planta. 2012; 1:36-46.

Tanir HM, Sener T, Inal M, Akyuz F, Uzuner K, Sivri E. Effect of quercetine and glutathione on the level of superoxide dismutase, catalase, malonyldialdehyde, blood pressure and neonatal outcome in a rat model of preeclampsia induced by NG-nitro-L-arginine-methyl ester.Eur J Obst Gyn Rep Bio. 2005; 118:190-195.

Abdelmoaty MA, Ibrahim MA, Ahmed NS, Abdelaziz MA. Confirmatory studies on the antioxidant and antidiabetic effect of quercetin in rats. Ind J Clin Biochem. 2010; 25:188-192.

Kaul TN, Middleton Jr E, Ogra PL. Antiviral effect of flavonoids on human viruses. J Med Virol. 1985; 15:71-79.

Mahmood N, Piacente S, Pizza C, Burke A, Khan AI, Hay AJ. The Anti-HIV Activity and Mechanisms of Action of Pure Compounds Isolated from Rosa damascena. Biochem Biophy Res Comm. 1996; 229:73-79.

Ciofalo F, Levitt B, Roberts J. Some aspects of the antiarrhythmic activity of reserpine. Br J Pharmacol Chemother. 1966; 28:44.

Abubacker MN and Vasantha S. Antibacterial activity of ethanolic leaf extract of Rauwolfia tetraphylla (Apocyanaceae) and its bioactive compound reserpine. Drug Invent Today. 2011; 3:16-17.

Fernandes VS, Santos JR, Leão AH, Medeiros AM, Melo TG, Izídio GS, Cabral A, Ribeiro RA, Abílio VC, Ribeiro AM, Silva RH. Repeated treatment with a low dose of reserpine as a progressive model of Parkinson's disease. Behav Brain Res. 2012; 23:154-163.

Kesharwani A, Polachira SK, Nair R, Agarwal A, Mishra NN, Gupta SK. Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Compl Alt Med. 2017; 17:110.

Lewis JJ. Rauwolfia derivatives. Physiol Pharmacol. 2017; 1:479-536.

Kuo YC, Kuo YH, Lin YL, Tsai WJ. Yatein from Chamaecyparis obtusa suppresses herpes simplex virus type 1 replication in HeLa cells by interruption the immediate-early gene expression. Antiviral Res. 2006; 70:112-120.

Cui Q, Du R, Liu M, Rong L. Lignans and their derivatives from plants as antivirals. Mol. 2020; 25:183.

Wang Y, Wang X, Xiong Y, Kaushik AC, Muhammad J, Khan A, Dai H, Wei DQ. New strategy for identifying potential natural HIV-1 non-nucleoside reverse transcriptase inhibitors against drug-resistance: An in silico study. J Biomol Struc Dynam. 2019; 30:1-5.

Shimizu JF, Lima CS, Pereira CM, Bittar C, Batista MN, Nazaré AC, Polaquini CR, Zothner C, Harris M, Rahal P, Regasini LO. Flavonoids from Pterogyne nitens inhibit hepatitis C virus entry. Sci Rep. 2017; 7:1-9.

Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enz Inhib Med Chem. 2020; 35:145-151.

Jo S, Kim H, Kim S, Shin DH, Kim MS. Characteristics of flavonoids as potent MERS‐CoV 3C‐like protease inhibitors. Chem Bio Drug Des. 2019; 94:2023-2030.

Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, Lee CK, Chang ST, Kuo CJ, Lee SS, Hou CC. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007; 50:4087-4895.

Chen M, Kilgore N, Lee KH, Chen DF. Rubrisandrins A and B, lignans and related anti-HIV compounds from Schisandra rubriflora. J Nat Prod. 2006; 69:1697-1701.

Tian RR, Xiao WL, Yang LM, Wang RR, Sun HD, Liu NF, Zheng YT. The isolation of Rubrifloralignan A and its antiHIV-1 activities. Chin J Nat Med. 2006; 4:40-45.

Jiang ZY, Yu YJ, Huang CG, Huang XZ, Hu QF, Yang GY, Wang HB, Zhang XY, Li GP. Icetexane diterpenoids from Perovskia atriplicifolia. Planta Med. 2015; 81:241- 246.

Liu AL, Yang F, Zhu M, Zhou D, Lin M, Lee SM, Wang YT, Du GH. In vitro anti-influenza viral activities of stilbenoids from the lianas of Gnetum pendulum. Planta Med. 2010; 76:1874-1876.

Lavoie S, Côté I, Pichette A, Gauthier C, Ouellet M, Nagau-Lavoie F, Mshvildadze V, Legault J. Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Compl Altern Med. 2017; 17:123.

Brandt CR, Piraino F. Mushroom antivirals. Recent Res Dev Antimicrob Agents Chemother. 2000; 4:11-26.

Piraino FF. Emerging antiviral drugs from medicinal mushrooms. Int J Med Mushrooms 2006; 8:101-114.

Yasuhara-Bell J, Lu Y. Marine compounds and their antiviral activities. Antiviral Res. 2010; 86:231-340.

Wang W, Wang SX, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs. 2012; 10:2795-2816.

Dang VT, Benkendorff K, Green T, Speck P. Marine snails and slugs: a great place to look for antiviral drugs. J Virol. 2015; 89:8114-8118.

Abdelmohsen UR, Balasubramanian S, Oelschlaeger TA, Grkovic T, Pham NB, Quinn RJ, Hentschel U. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infec Dis. 2017; 17:e30-41.

Van der Meer FJ, de Haan CA, Schuurman NM, Haijema BJ, Verheije MH, Bosch BJ, Balzarini J, Egberink HF. The carbohydrate-binding plant lectins and the non-peptidic antibiotic pradimicin A target the glycans of the coronavirus envelope glycoproteins. J Antimicrob Chemother. 2007; 60:741-749.

Haid S, Blockus S, Wiechert SM, Wetzke M, Prochnow H, Dijkman R, Wiegmann B, Rameix-Welti MA, Eleouet JF, Duprex P, Thiel V. Labyrinthopeptin A1 and A2 efficiently inhibit cell entry of hRSV isolates. Eur Res. J 2017 50:PA4124.

Downloads

Published

2020-09-01

How to Cite

Elufioye, T. O., & Habtemariam, S. (2020). Drug Development for the Management of Corona Viruses: Insights from Natural Antiviral Agents: doi.org/10.26538/tjnpr/v4i9.2. Tropical Journal of Natural Product Research (TJNPR), 4(9), 490–511. Retrieved from https://tjnpr.org/index.php/home/article/view/1108