Antioxidant Effect of Ex-maradi Okra Fruit Variety (Abelmuscus esculentus) on Alloxan-Induced Diabetic Rats

Authors

  • Abdullahi Y. Abbas Department of Biochemistry, Faculty of Science, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.
  • Ismail Muhammad Department of Biochemistry, Faculty of Natural and applied Sciences, Umaru Musa Yaradua University, P.M.B. 2218, Katsina, Nigeria.
  • Muhammad B. AbdulRahman Department of Chemical Pathology and Immunology, Faculty of Basic Medicine, College of Health sciences, Usmanu Danfodiyo University P.M.B. 2346 Sokoto, Nigeria.
  • Lawal S. Bilbis Department of Biochemistry, Faculty of Science, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.

Keywords:

Diabetes Mellitus, Oxidative stress, Antioxidants, Abelmuscus escuientus

Abstract

Oxidative stress is associated with the development of diabetic complications and supplementation with antioxidants might delay the development of these complications in diabetic patients. The aim of the present study was to investigate the antioxidant potentials of different parts (Whole Okra, „WO‟ Okra Peel „OP‟ and Okra Seed „OS‟) of Ex-maradi Okra fruit variety on Alloxan-induced diabetic rats. Vitamins A, C and E were determined by spectrophotometric method. Catalase activity was assayed using chemical reactivity method of Beers and Sizer and glutathione by the method described by Petterson and Lazarow. Malonaldehyde (MDA) was measured by the method of Shah and Walker. For antioxidant minerals, Atomic absorption spectroscopy (AAS) was used. Significant (P < 0.05) reduction in serum levels of vitamins A, C and E, Catalase activity, Reduced Glutathione, Zn, Cr and Mn and significant (P < 0.05) increase in serum levels of Cu, Fe and lipid peroxidation product (MDA) were observed in the diabetic untreated rats compared to the normal control rats. Oral administration of the different parts of the Okra fruit each at   doses of 100, 200 and 300 mg/kg to the diabetic rats for 21 days resulted in significant (P < 0.05) reversal of the observed altered aforementioned biochemical parameters in a dose-dependent manner compared to the normal control rats. The results indicated that the Whole Okra fruit and Okra Seeds of Ex-maradi Okra fruit variety exhibited significant antioxidant effect in Alloxan-induced diabetic rats.

References

Cigremis Y, Nuray T, Murat G, Muslum A. The Gene Expression of Antioxidant Enzymes in Streptozotocin- Induced Experimental Diabetes in Rat Liver Tissue. Med Sci. 2015; 4(4):2834-2848.

Gumieniczek A, Hopkala H, Wojtowich Z, Nikolajuk J. Changes in antioxidant status of heart muscle tissue in experimental diabetes in rabbits. Acta Biochim Pol. 2002; 49:529–535.

Oberley LW. Free radicals and diabetes. Free Rad Biol Med. 1988; 5:113–124.

Tiwari AK and Rao JM. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. Curr Sci. 2002; 83:30–38.

Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabet. 1991; 40:405–412.

Lin YF, Tsai, HL, Lee, YC, Chang, SJ. Maternal vitamin E supplementation affects the antioxidant capability and oxidative status of hatching chicks. J Nutr. 2005; 135(10):2457–2461.

Bhanot S, Thompson KH, Mcneill, JH. Essential trace elements of potential importance in nutritional management of diabetes mellitus. Nutr Res. 1994; 14:593–604.

Zargar AH, Shah NA, Massodi SR. Copper, zinc and magnesium levels in non-insulin-dependent diabetes mellitus. Postgrad Med J. 1998; 74:665–668.

Meyer JA and Spence DM. A perspective on the role of metals in diabetes: past findings and possible future directions. Metallomics 2009; 1:32–49.

Zimmet PZ. Diabetes epidemiology as a tool to trigger diabetic research and care. Diabetologia 1999; 42:499-518.

Rangkadillok N, Sitthimonchai S, Worasuttayangkurn L, Mahidol CR, Satayavivad MJ. Evaluation of Free Radical Scavenging and Antityrosinase Activities of Standardised Longan Fruit Extract. Journal. Food Chem Toxicol. 2007; 45:328-336.

Sabitha V, Ramachandran S, Naveen KR, Panneerselvam K. Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench. in streptozotocin- induced diabetic rats. J Pharm Bioallied Sci. 2011; 3(3):397–402.

Indah MA. Differential Expression Analysis of Diabetic Related Genes in J Physiol Pharm. 2011; 57 (Suppl. 2):221.

Adelakun OE, Ade-Omowaye BIO, Adeyemi IA, VanDe- Venter M. Functional properties and mineral contents of a Nigerian, Okra seed (Abelmoschus esculentus Moench) Flour as Influenced by Pretreatment. J Food Technol. 2010; 8(2):39–45.

Kandur SV and Goyal RK. Beneficial effects of Zingiber officinale Roscoe on fructose induced hyperlipidemia & hyperinsulinemia in rats. Ind J Exp Biol. 2005; 43:1161- 1164.

Rutkowski M, Grzegorczyk K, Gendek E, Kedziora J. Laboratory Convenient Modification of Bessey Method for Vitamin A Determination in Blood Plasma J Physiol Pharm. 2006; 57(2):221.

Bessey OA, Lowry OH, Brock MJ, Lopez JA. The Determination of Vitamin A and Carotene in Small Quantities of Blood Serum. J Biochem. 1946; 234 (166):177-188.

Omaye ST, Turabull JD, Sanberlich HE. “Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids”. Meth Enzymol.1979; 62:1-11.

Hashim SA and Schuttringer GR. Rapid Determination of Tocopherol Inmacro- and Microquantities of Plasma. Results Obtained in Various Nutrition and Metabolic Studies. Am J Clin Nutri. 1966; 19(2):137-145.

Beers RF and Sizer IW. Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952; 75(195):130-140.

Patterson JW and Lazarow A. Sulfhydryl protection against dehydroascorbic acid diabetes. J Biol Chem. 1959; 186:l41- 144.

Shah JK and Walker AM. Quantitative determination of malondialdehyde, BiochemBiopyActa.1989; 15(11):207- 211.

Bhatti M, Peter SJ, John E. Determination of trace element using Unicam 969 Atomic absorption Spectrophotometer. Ann Int Med. 2006; 205(1):96-105.

Asayama K, Kooy NW, Burr, IM. Effect of vitamin E deficiency and selenium deficiency on insulin secretory reserve and free radical scavenging systems in islets:decrease of isletmanganosuperoxide dismutase. J Lab Din Med.1986; 107:459-464.

Aliyu M, Lawal M, Mojiminiyi F, Saidu Y, Bilbis LS. Serum antioxidant vitamins levels in non- insulin dependant diabetes mellitus subject in Sokoto, Nigeria. Journal of Nigerian Soc Exp Biol. 2005; 17(2):107-114.

Mooradian AD and Morely B. “Narrative review” a rational approach to starting insulin therapy. Annal Int Med. 1987; 145(2):125-134.

Habtamu FG, Negussie R, Gulelat DH, Ashagrie Z. Nutritional Quality and Health Benefits of Okra (Abelmoschus Esculentus): A Review. Global J Med Res: Interdiscipl. 2014; 14(5):1.

Wolff SP. Diabetes Mellitus and Free radicals. Free radicals, Transition Metals and Oxidative Stress in the Aetiology of Diabetes Mellitus and Complications. Br Med Bull. 1993; 49:642-652.

Pratibha K, Usha A, Rajni A. Serum Adenosinedeaminase51-nucleotidase and Malondialdehyde in Acute Infective Hepatitis. Ind J Clin Biochem. 2004; 19:128-131.

Welihinda J and Karunanayake EH. Extra-pancreatic Effects of Momordica charantia in rats. J Ethnopharmacol.1986; 17:247-255.

Perez C, Canal JR, Torres, MD. Experimental Diabetes Treated with Ficus carica Extract: Effect on Oxidative Stress Parameters. Acta Diabetol. 2003; 40:3-8.

Anupam R, Shanker L, Santi, M. Functional Properties of Okra Abelmoschus esculentus L. (Moench): Traditional Claims and Scientific Evidences. Plant Science Today 2014; 1(3):121-130.

Zingg JM, Ricciarelli R, Azzi A. Scavenger Receptors and modified Lipoproteins. Fatal Attractions. IUBMB Life. 2000; 49:397-403.

Holeckek V, Racek J, Jerabek Z. Administration of Multivitamin combinations and Trace Elements in Diabetics. Claslek Cask.1995; 134(3):80-83.

Hunker T, Akaran K, Ceylon A, Karasu C. Effect of Codliver oil on Tissue Antioxidant Pathways in Normal and Streptozotocin Diabetic rats. Cell Biol Func. 2002 2:131- 138.

Tasneem G, Kazi I, Afridi N, Mohammad K, Abbas K. Copper, Chromium, Manganese, Iron, Nickel, and Zinc Levels in Biological Samples of Diabetes Mellitus Patients. Biol Trace Elem Res. 2008; 122:1–18.

Giovann F, Beatrice B, Angela P, Francesco T, Yolande A, Cristiano F, Riccardo O, Roberto M. Blood Metals Concentration in Type 1 and Type 2 Diabetics. J Biol Trace Elem Res. 2013; 13:985-988.

Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, Kandhro GA. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res. 2008; 122:1–18.

Serdar MA, Bakir F, Haşimi A, Çelik T, Akin O, Kenar L, Aykut O, Yildirimkaya M. Trace and Toxic Element Patterns in Nonsmoker Patients with Noninsulin-dependent Diabetes Mellitus, Impaired Glucose tolerance, and Fasting glucose. Int J Diabet Dev Ctries. 2009; 29:35–40.

Basaki M, Saeb M, Nazifi S, Shamsaei HA. Zinc, Copper, Iron, and Chromium Concentrations in Young Patients with Type 2 Diabetes Mellitus. Biol Trace Elem Res. 2012; 148:161–164.

Ekmekcioglu C, Prohaska C, Pomazal K, Steffan I, Schernthaner G, Marktl W. Concentrations of seven trace elements in different hematological matrices in patients with type-2 diabetes as compared to healthy controls. Biol Trace Elem Res. 2001; 79:205–219.

Lal M, Beena SK, Shetty V, Rao GM. Influence of modified levels of plasma magnesium, copper, zinc and iron levels on thiols and protein status in diabetes mellitus and diabetic retinopathy. IJAPBS.2013; 2:67–72.

King GL. The Role of Inflammatory Cytokines in Diabetes and its Complications. J Periodontol. 2008; 79:1527–1534.

Tames FJ, Mackness M, Arrol S, Laing I, Durrington PN. Non-enzymatic Glycation of Apo-lipoprotein B in the Sera of Diabetic and Non-diabetic Subjects. Atheroscl. 1992; 93:237.

Chandra M, Chandra N, Agrawal R, Kumar A, Ghatak A, Pandey VC. The Free Radical System in Ischemic Heart Disease. Int J Cardiol. 1994; 43:121-125.

Jiang R, Manson JE, Meigs JB. Body iron stores in relation to risk of type-2 diabetes in apparently healthy women. JAMA. 2004; 291:711–717.

Thomas MC, MacIsaac R, Tsalamandris C, Power D, Jerums G. Unrecognised Anaemia and Diabetes; A Cross Sectional Survey. Diabet Care 2003; 26:1164–1169.

Walter RM, Uriu-Hare JY, Olin KL, Oster MH, Anawalt BD, Critchfield JW, Keen CL. Copper, Zinc, Manganese and Magnesium Status and Complications of Diabetes Mellitus. Diabet Care 1991; 14:1050–1056.

Chen MD, Lin PY, Tsou CT, Wang JJ, Lin WH. Selected metals status in patients with noninsulindependent diabetes mellitus. Biol Trace Elem Res. 1995; 50:119–124.

Olaniyan OO, Awonuga MAM, Ajetunmobi AF, Adeleke IA, Fagbolade OJ, Olabiyi KO, Oyekanmi BA, Osadolor HB. Serum Copper and Zinc Levels in Nigerian Type 2 Diabetic Patients. Afr J Diabet Med. 2012; 20:36–38.

Beshgetoor D and Hambidge M. Clinical conditions altering copper metabolism in humans. Am J Clin Nutr. 1998; 67:1017S–1021S.

Zbronska H, Grzeszczak W, Jendryczko A, Zbronski R, Kuzniewicz R. Activity of superoxide dismutase in erythrocytes and leukocytes and levels of zinc and copper in blood of patients with diabetes. Effects of diabetic treatment on examined parameters. Pol Arch Med Wew. 1995; 94:228–234.

Tan KCB, Aiv VGH, Chow WS, Chau MT, Leong L, Lam KSL. Influence of low density lipoprotein (LDL) subfraction profile and LDL oxidation on endothelium- dependent and independent vasodilation in patients with type-2 diabetes. J Clin Endocrinol Metab. 1999; 84:3212– 3216.

Failla ML and Kiser RA. Hepatic and Renal Metabolism of Copper and Zinc in the Diabetic Rat. Am J Physiol. 1982; 244:l15-121.

Craft NE and Failla ML. Zinc, Iron, and Copper Absorption in the Streptozotocin-Diabetic Rat. Am J Physiol. 1983; 244:E122-8.

Bhanot S, Thompson KH, Mcneill JH. Essential trace elements of potential importance in nutritional management of diabetes mellitus. Nutr Res.1994; 14:593–604.

Chung JS, Franco RJS, Curi PR. Renal excretion of zinc in normal individuals during zinc tolerance test and glucose tolerance test. Trace Elem Electrol. 1995; 12:62–67.

Eliasson B, Bjornsson E, Urbanavicius V, Andersson H, Fowelin J, Attvall S, Abrahamsson H, Smith U. Hyperinsulinaemia impairs gastrointestinal motility and slows carbohydrate absorption. Diabetol. 1995; 38:79–85.

Chalmers KH. Medical nutrition therapy. In: Kahn CR, Weir GC, King G, Jacobson AM, Moses AC, Smith RJ (eds) Joslin‟s diabetes mellitus, 14th edn. Lippincott Williams and Wilkins. 2005. 611– 629 p.

Nsonwu AC, Usoro CAO., Etukudo MH, Usoro IN. Glycemic control and serum and urine levels of chromium and magnesium in diabetics in Calabar, Nigeria. Pak J Nutr. 2006; 5:75–78.

Morris BW, Macneil S, Hardisty CA, Heller S, Burgin C, Gray TA. Chromium homeostasis in patients with type II (NIDDM) diabetes. Trace Elem Med Biol. 1999; 13:57–61.

Cefalu WT, Wang ZQ, Zhang XH, Baldor, LC, Russell, J. Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J Nutr. 2002; 132:1107–1114.

Anderson RA. Chromium, glucose intolerance and diabetes. J Am Coll Nutr. 1998; 17:548–555.

Anderson RA. Chromium in the prevention and control of diabetes. Diabet Metab. 2000; 26:22–27.

Tuvemo T and Gebre-Medhin M. The Role of Trace Element in Juvenile Dabetes Mellitus. J Pediatr. 1985; 12:213-219.

Adewumi MT, Njoku CH, Abubakar MK, Shehu RA, Bilbis LS. Serum chromium, copper, and manganese levels of diabetic subjects in Katsina, Nigeria. Asian J Biochem. 2007; 2:284–288.

Lee SH, Jouihan HA, Cooksey RC, Jones D, Kim HJ, Winge DR, Mc Clain DA. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinol. 2013; 154:1029– 1038.

Korc M. Manganese action on pancreatic protein synthesis in normal and diabetic rats. Am J Physiol.1983; 245:628– 634.

Chausmer AB. Zinc, Insulin and Diabetes. J Am Coll Nutr.1998; 17:109-115.

Di-Silvestro RA. Zinc in relation to diabetes and oxidative disease. J Nutr. 2000; 130:1509–1511.

Downloads

Published

2020-03-01

How to Cite

Y. Abbas, A., Muhammad, I., B. AbdulRahman, M., & S. Bilbis, L. (2020). Antioxidant Effect of Ex-maradi Okra Fruit Variety (Abelmuscus esculentus) on Alloxan-Induced Diabetic Rats. Tropical Journal of Natural Product Research (TJNPR), 4(3), 105–112. Retrieved from https://tjnpr.org/index.php/home/article/view/1047