Green Silver Nanoparticles Based on the Chemical Constituents of Glinus lotoides L.: In Vitro Anticancer and Antiviral Evaluation

doi.org/10.26538/tjnpr/v4i10.10

Authors

  • Mai M. Farid Phytochemistry and Plant Systematics Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
  • Mahmoud Emam Phytochemistry and Plant Systematics Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
  • Reda S. Mohammed Department of Pharmacognosy, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
  • Sameh R. Hussein Phytochemistry and Plant Systematics Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
  • Mona M. Marzouk Phytochemistry and Plant Systematics Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt

Keywords:

LC/ESI/MSn, GC/MS, Cytotoxicity, Antiviral, Silver nanoparticles, Glinus lotoides

Abstract

Green silver nanoparticles (AgNPs) utilize companionable nanomaterials for investigative and therapeutic determinations. The existing study reports the synthesis of AgNPs using Glinus lotoides L. aqueous methanol extract (GLE) besides evaluation of anticancer and antiviral effects of GLE and its synthesized AgNPs (GLE_AgNPs). The formation of GLE_AgNPs was confirmed by UV-VIS spectrophotometer. Their spherical shape with average size was found to be 5-50 nm by TEM (transmission electron microscope). Fourier-transform infrared spectrometer (FTIR) investigation specified the presence of alcohol/phenol, amino and aromatic
carbonyl groups in GLE that were complex in reduction and capping of nanoparticles. The in vitro cytotoxic activity of GLE was screened using four human carcinoma cell lines; liver (HepG2), colon (HCT116), breast (MCF7), larynx (Hep 2) and showed IC50 24.3, 26.1, 30, 50
(μg/mL), compared to doxorubicin with IC504.28, 3.73, 4.43, 3.73 (μg/mL), respectively. Furthermore, the antiproliferative effects (IC50, μg/mL) of GLE_AgNPs were observed with HepG2 (25.4) and HCT116 (26.3) also it exhibited no cytotoxicity against normal human
melanocytes (HFB-4). The antiviral activity showed a higher potency of GLE_AgNPs against H5N1 virus with inhibitory effect about 60%, while the GLE about 26.5% (100μg/μL). Additionally, the phytochemical constituents of GLE, which could be used as reducing agents in
GLE_AgNPs, were characterized using spectrometric techniques. GC/MS analysis of the petroleum ether/dichloromethane fraction (1:1 v/v) revealed the identification of 33 compounds of fatty acids, fatty acid esters and sterols. LC/ESI/MSn of the defatted GLE afforded 30
compounds that belong to phenolics, organic acids, flavonol O-glycosides, flavonol O-acyl glycosides and C-glycosyl flavonoids.

Author Biography

Mahmoud Emam, Phytochemistry and Plant Systematics Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt

College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China

References

Haggag EG, Elshamy AM, Rabeh MA, Gabr NM, Salem M, Youssif KA, Samir A, Muhsinah AB, Alsayari A, Abdelmohsen UR. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int J Nanomed. 2019; 14:6217.

Ajitha B, Reddy YAK, Reddy PS. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2014; 128:257-262.

Kathiravan V, Ravi S, Ashokkumar S, Velmurugan S, Elumalai K, Khatiwada CP. Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 139:200-205.

Švecová M, Ulbrich P, Dendisová M, Matějka P. SERS study of riboflavin on green-synthesized silver nanoparticles prepared by

reduction using different flavonoids: What is the role of flavonoid used?. Spectrochim Acta A Mol Biomol Spectrosc. 2018; 195:236-245.

Esawy MA, Ragab TI, Basha M, Emam M. Evaluated bioactive component extracted from Punica granatum peel and its Ag NPs forms as mouthwash against dental plaque. Biocatal Agric Biotechnol. 2019; 18:101073.

Ragab TI, Nada AA, Ali EA, Soliman AA, Emam M, El Raey MA. Soft hydrogel based on modified chitosan containing P. granatum peel extract and its nano-forms: Multiparticulate study on chronic wounds treatment. Int J Biol Macromol. 2019; 135:407-421.

El-Rafie HM and Hamed MAA. Antioxidant and antiinflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species. Adv Nat Sci: Nanosci Nanotechnol. 2014; 5:035008.

AshaRani P, Mun GL, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2008; 3:279-290.

Balakrishnan S, Sivaji I, Kandasamy S, Duraisamy S, Kumar NS, Gurusubramanian G. Biosynthesis of silver nanoparticles using Myristica fragrans seed (nutmeg) extract and its antibacterial activity against multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates. Environ Sci Poll Res. 2017; 24:14758- 14769.

Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol. 2010; 8:1.

Galdiero S, Falanga A, Cantisani M, Ingle A, Galdiero M, Rai M. Silver nanoparticles as novel antibacterial and antiviral agents. In handbook of nanobiomedical research: Fundamentals, Applications and Recent Developments. Materials for Nanomedicine, World Sci. 2014; 1:565-594.

Sharma V, Kaushik S, Pandit P, Dhull D, Yadav JP, Kaushik S. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl Microbiol Biotechnol. 2019; 103:881-891.

Mengesha AE and Youan BBC. Anticancer activity and nutritional value of extracts of the seed of Glinus lotoides. J Nutr Sci Vitaminol. 2010; 56:311-318.

Biswas T, Gupta M, Achari B, Pal BC. Hopane-type saponins from Glinus lotoides Linn. Phytochem. 2005; 66:621-626.

Hamed AI and El-Emary NA. Triterpene saponins from Glinus lotoides var. dictamnoides fn1. Phytochem. 1999; 50:477-480.

Bhavani S. Glinus lotoides (Ciru-Ceruppadai): An overview. J Chem Pharm Res. 2015; 7:676-682.

Emam M, El Raey MA, Eisa WH, El-Haddad AE, Osman SM, ElAnsari MA, Rabie AG M. Green Synthesis of Silver Nanoparticles from Caesalpinia gilliesii (Hook) leaves: antimicrobial activity and in vitro cytotoxic effect against BJ-1 and MCF-7 cells. J Appl Pharm Sci. 2017; 7:226-233.

Vichai V and Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006; 1:1112-1116.

Rashad AE, Shamroukh AH, Abdel-Megeid RE, Mostafa A, ElShesheny R, Kandeil A, Ali MA, Banert K. Synthesis and screening of some novel fused thiophene and thienopyrimidine derivatives for anti-avian influenza virus (H5N1) activity. Eur J Med Chem. 2010; 45:5251-5257.

Saleme MdLS, Cesarino I, Vargas L, Kim H, Vanholme R, Goeminne G, Van Acker R, de Assis Fonseca FC, Pallidis A, Voorend W. Silencing -caffeoyl shikimate esterase affects lignification and improves saccharification. Plant Physiol. 2017; 157(3):1040-1057.

Marzouk MM, Hussein SR, Elkhateeb A, Farid MM, Ibrahim LF, Abdel-Hameed ESS. Phenolic profiling of Rorippa palustris (L.) Besser (Brassicaceae) by LC-ESI-MS: Chemosystematic significance and cytotoxic activity. Asian Pac J Trol Dis. 2016; 6:633-637.

Adams RP. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th Edition Allured Publishing Corporation, Carol Stream. 2007.

Sobeh M, Mahmoud MF, Hasan RA, Cheng H, El-Shazly AM, Wink M. Senna singueana: Antioxidant, hepatoprotective, antiapoptotic properties and phytochemical profiling of a methanol bark extract. Mol. 2017; 22:1502.

El Raey MA, El-Hagrassi AM, Osman AF, Darwish KM, Emam M. Acalypha wilkesiana flowers: Phenolic profiling, cytotoxic activity of their biosynthesized silver nanoparticles and molecular docking study for its constituents as Topoisomerase-I inhibitors. Biocatal Agric Biotechnol. 2019; 20:101243.

Sahakitpichan P, Disadee W, Ruchirawat S, Kanchanapoom T. L- (-)-(N-trans-Cinnamoyl)-arginine, an Acylamino Acid from Glinus oppositifolius (L.) Aug. DC. Mol. 2010; 15:6186-6192.

Chhanda SA, Muslim T, Rahman MA. Phytochemical Studies on Glinus oppositifolius (L.) Aug. DC. Dhaka Univ J Sci. 2014; 62:45-48.

Eisa WH, Zayed MF, Anis B, Abbas LM, Ali SS, Mostafa AM. Clean production of powdery silver nanoparticles using Zingiber officinale: the structural and catalytic properties. J Clean Prod. 2019; 241:118398.

Suffness MP and Pezzuto JJM. Assays related to cancer drug discovery. Methods in Plant Biochemistry: Assays for Bioactivity; Hostettman, K., Ed. 1990; 6:71-133 p.

Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. 2005; 3:6.

Prasannaraj G and Venkatachalam P. Green engineering of biomolecule-coated metallic silver nanoparticles and their potential cytotoxic activity against cancer cell lines. Advances in Natural Sciences: J Nanosci Nanotechnol. 2017; 8(2):025001.

Yi Tsang N, Zhao LH, Wai Tsang S, Zhang HJ. Antiviral Activity and Molecular Targets of Plant Natural Products Against Avian Influenza Virus. Curr Org Chem. 2017; 21:1777-1804.

Hussein SR, Latif RRA, Marzouk MM, Elkhateeb A, Mohammed RS, Soliman AA, Abdel-Hameed ESS. Spectrometric analysis, phenolics isolation and cytotoxic activity of Stipagrostis plumosa (Family Poaceae). Chem Papers. 2018; 72:29-37.

Helal M and El Negomy I. Flavonoid constituents from Morettia philaena (Del.) DC. and their antimicrobial activity. J Appl Sci Res. 2012; 8:1484-1489.

Librán-Pérez M, Pereiro P, Figueras A, Novoa B. Antiviral activity of palmitic acid via autophagic flux inhibition in zebrafish (Danio rerio). Fish Shellfish Immunol. 2019; 95:595-605.

Zhao L, Chen Y, Wu K, Yan H, Hao X, Wu Y. Application of fatty acids as antiviral agents against tobacco mosaic virus. Pestic Biochem Physiol. 2017; 139:87-91.

Svahn SL, Ulleryd MA, Grahnemo L, Ståhlman M, Borén J, Nilsson S, Jansson JO, Johansson ME. Dietary omega-3 fatty acids increase survival and decrease bacterial load in mice subjected to Staphylococcus aureus-induced sepsis. Infect Immun. 2016; 84:1205-1213.

Svahn SL, Grahnemo L, Pálsdóttir V, Nookaew I, Wendt K, Gabrielsson B, Schéle E, Benrick A, Andersson N, Nilsson S. Dietary polyunsaturated fatty acids increase survival and decrease bacterial load during septic Staphylococcus aureus infection and improve neutrophil function in mice. Infect Immun. 2015; 83:514-521.

Rustan AC and Drevon CA. Fatty acids: structures and properties. e LS. John Wiley & Sons, Ltd. 2001. 1-7 p.

Harada H, Yamashita U, Kurihara H, Fukushi E, Kawabata J, Kamei Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res. 2002; 22:2587.

Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti‐inflammatory property of n‐hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Des. 2012; 80:434-439.

Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B. Effect of Feronia limonia on mosquito larvae. Fitoter. 2000; 71:553-555.

Pariza MW, Park Y, Cook ME. The biologically active isomers of conjugated linoleic acid. Prog Lipid Res. 2001; 40:283-298.

Chandrasekaran M, Senthilkumar A, Venkatesalu V. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Eur Rev Med Pharmacol Sci. 2011; 15:775-780.

Brent LC, Reiner JL, Dickerson RR, Sander LC. Method for characterization of low molecular weight organic acids in atmospheric aerosols using ion chromatography mass spectrometry. Anal Chem. 2014; 86:7328-7336.

Boonpangrak S, Lalitmanat S, Suwanwong Y, Prachayasittikul S, Prachayasittikul V. Analysis of ascorbic acid and isoascorbic acid in orange and guava fruit juices distributed in Thailand by LC-ITMS/MS. Food Anal Meth. 2016; 9:1616-1626.

Abu-Reidah IM, Ali-Shtayeh MS, Jamous RM, Arráez-Román D, Segura-Carretero A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L.(Sumac) fruits. Food Chem. 2015; 166:179-191.

Spínola V, Pinto J, Castilho PC. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD–ESI-MSn and screening for their antioxidant activity. Food Chem. 2015; 173:14-30.

Elkhateeb A, El-Shabrawy M, Abdel-Rahman RF, Marzouk MM, El-Desoky AH, Abdel-Hameed ESS, Hussein SR. LC-MS-based metabolomic profiling of Lepidium coronopus water extract, antiinflammatory and analgesic activities, and chemosystematic significance. Med Chem Res. 2019; 28:505-514.

Ferreres F, Andrade PB, Valentão P, Gil-Izquierdo A. Further knowledge on barley (Hordeum vulgare L.) leaves O-glycosyl-Cglycosyl flavones by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. J Chromatogr A. 2008; 1182:56-64.

Kite GC, Rowe ER, Lewis GP, Veitch NC. Acylated flavonol triand tetraglycosides in the flavonoid metabolome of Cladrastis kentukea (Leguminosae). Phytochem. 2011; 72:372-384.

Ibrahim LF, Elkhateeb A, Marzouk MM, Hussein SR, AbdelHameed ESS, Kassem ME. Flavonoid investigation, LC–ESI-MS profile and cytotoxic activity of Raphanus raphanistrum L.(Brassicaceae). J Chem Pharm Res. 2016; 8:786-793.

Farag MA, Sakna ST, El-fiky NM, Shabana MM, Wessjohann LA. Phytochemical, antioxidant and antidiabetic evaluation of eight Bauhinia L. species from Egypt using UHPLC–PDA–qTOFMS and chemometrics. Phytochem. 2015; 119:41-50.

Napolitano A, Cerulli A, Pizza C, Piacente S. Multi-class polar lipid profiling in fresh and roasted hazelnut (Corylus avellana cultivar “Tonda di Giffoni”) by LC-ESI/LTQOrbitrap/MS/MSn. Food Chem. 2018; 269:125-135.

Downloads

Published

2020-10-01

How to Cite

Farid, M. M., Emam, M., Mohammed, R. S., Hussein, S. R., & Marzouk, M. M. (2020). Green Silver Nanoparticles Based on the Chemical Constituents of Glinus lotoides L.: In Vitro Anticancer and Antiviral Evaluation: doi.org/10.26538/tjnpr/v4i10.10. Tropical Journal of Natural Product Research (TJNPR), 4(10), 714–721. Retrieved from https://tjnpr.org/index.php/home/article/view/1022