In Vitro Cytotoxic Activity of Constituents of the Aerial Parts of Glycosmis parviflora doi.org/10.26538/tjnpr/v4i10.8

Main Article Content

Phu Q. D. Nguyen
Hoai T. Nguyen
Linh T. K. Nguyen
Hung Q. Vo
Anh T. Le
Thao T. Do
Duc V. Ho

Abstract

Glycosmis parviflora (Sims) Little is used in Vietnamese ethnomedicine to treat several ailments. We investigated the aerial parts of G. parviflora and obtained three triterpenes, a sesquiterpene, and a flavonoid C-glycoside. The terpenes were friedelin, arborinol, isoarborinol, and spathulenol, and the glycoside was vitexin. The compounds were identified by one- and two-dimensional nuclear magnetic resonance spectroscopy and by comparison with previous reports. Spathulenol exhibited moderate cytotoxic activity against LU-1, MDA-MB-231, MKN7, HepG2, and HeLa human cancer cells with 50% inhibitory concentration (IC50) values ranging from 31.88 to 42.33 µg/mL. Therefore, G. parviflora and spathulenol might be useful for developing novel anticancer agents.

Article Details

How to Cite
Nguyen, P. Q. D., Nguyen, H. T., Nguyen, L. T. K., Vo, H. Q., Le, A. T., Do, T. T., & Ho, D. V. (2020). In Vitro Cytotoxic Activity of Constituents of the Aerial Parts of Glycosmis parviflora: doi.org/10.26538/tjnpr/v4i10.8. Tropical Journal of Natural Product Research (TJNPR), 4(10), 703-707. https://tjnpr.org/index.php/home/article/view/1020
Section
Articles

References

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: Globocan of estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6):394-424.

WHO. Coronavirus Disease (COVID-19) Dashboard. Available from: https://covid19.who.int/ (accessed 2020/08/12).

Richards M, Anderson M, Carter P, Ebert BL, Mossialos E. The impact of the Covid-19 pandemic on cancer care. Nat Cancer. 2020; 1(6):565-567.

Ito C, Itoigawa M, Sato A, Hasan CM, Rashid MA, Tokuda H, Mukainaka T, Nishino H, Furukawa H. Chemical constituents of Glycosmis arborea: Three new carbazole alkaloids and their biological activity. J Nat Prod. 2004; 67(9):1488-1491.

Pacher T, Bacher M, Hofer O, Greger H. Stress induced carbazole phytoalexins in Glycosmis species. Phytochem. 2001; 58(1):129-135.

Yasir M, Tripathi MK, Singh P, Shrivastava R. The genus Glycosmis (Rutaceae): A comprehensive review on its phytochemical and and pharmacological perspectives. The Nat Prod J. 2019; 9(2):98-124.

Zhang D and Hartley TG. Glycosmis Corrêa. Ann. Mus. Natl. Hist. Nat. 6: 384. 1805, nom. cons. In: Wu ZY, Peter HR, Deyuan H. Flora of China. Eds. Missouri Botanical Garden Press; 2008. 11:80-83 p.

Ho PH. An Illustrated Flora of Vietnam [in Vietnamese] (2nd ed.). Tre Publishing House: Ho Chi Minh City, Viet Nam; 2003. 952 p.

Hofer O and Greger H. Sulfur-Containing Amides from Glycosmis Species (Rutaceae). In: Chang CWJ,Greger H, Hofer O, Herz W, Falk H, Kirby GW, Moore RE. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, Eds. Springer Vienna: Vienna; 2000. 187-223 p.

Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, VaigroWolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer I. 1991; 83(11):757-766.

Akihisa T, Yamamoto K, Tamura T, Kimura Y, Iida T, Nambara T, Chang FC. Triterpenoid Ketones from Lingnania chungii Moclure: Arborinone, Friedelin and Glutinone. Chem Pharm Bull (Tokyo). 1992; 40(3):789-791.

Farruque R, Chowdhury R, Sohrab MH, Hasan CM, Rashid MA. Triterpene constituents from the leaves of Melicope indica. Pharmazie. 2003; 58(7):518-520.

Gomes RA, Teles YCF, Pereira FdO, Rodrigues LAdS, Lima EdO, Agra MdF, Souza MdFVd. Phytoconstituents from Sidastrum micranthum (A. St. – Hil.) Fryxell (Malvaceae) and antimicrobial activity of pheophytin A. Braz J Pharm Sci. 2015; 51(4):861-867.

Goud TV, Reddy NS, Krishnaiah P, Venkateswarlu Y. Spathulenol: a rare sesquiterpene from soft coral Sinularia kavarattiensis. Biochem Syst Ecol. 2002; 30(5):493-495.

Cuong LCV, Trang DT, Cuc NT, Nhiem NX, Yen PH, Anh HLT, Huong LM, Minh CV, Kiem PV. Flavonoid glycosides from Antidesma ghaesembilla. Vietnam J Chem. 2015; 53(2e):94-97.

Pakrashi SC and Samanta TB. Acid induced empimerization and rearrangements of arborinol, the novel triterpene from Glycosmis arborea (ROXB.) DC. Tetrahedron Lett. 1967; 8(38):3679-3684.

Fan Q-F, Song Q-S, Zuo G-Y, Zheng J-Y, Na Z, Hu H-B. Chemical constituents of the twigs and leaves of Glycosmis montana. Chem Nat Compd. 2015; 51(3):550-551.

Ahmed R, Choudhury S, Vajczikova I, Leclercq PA. Essential oils of Glycosmis pentaphylla (Cor.). A new report from Assam, India. J Essent Oil Res. 2000; 12(4):471-474.

Guo S-S, Zhang W-J, Yang K, Liang J-Y, You C-X, Wang C-F, Li Y-P, Geng Z-F, Deng Z-W, Du S-S. Repellence of the main components from the essential oil of Glycosmis lucida Wall. ex Huang against two stored product insects. Nat Prod Res. 2017; 31(10):1201-1204.

Choo CY, Sulong NY, Man F, Wong TW. Vitexin and isovitexin from the leaves of Ficus deltoidea with invivo α-glucosidase inhibition. J Ethnopharmacol. 2012; 142(3):776-781.

Kim J, Lee I, Seo J, Jung M, Kim Y, Yim N, Bae K. Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3-L1 cells. Phytother Res. 2010; 24(10):1543-1548.

Kim JH, Lee BC, Kim JH, Sim GS, Lee DH, Lee KE, Yun YP, Pyo HB. The isolation and antioxidative effects of vitexin from Acer palmatum. Arch Pharm Res. 2005; 28(2):195-202.

Anjum A, Sultan MZ, Hasan CM, Rashid MA. Antibacterial and cytotoxic constituents from Bridelia verrucosa Haines growing in Bangladesh. Dhaka Univ J Pharm Sci. 2017; 16(1):61-68.

Odeh IC, Tor-Anyiin TA, Igoli JO, Anyam JV. In vitro antimicrobial properties of friedelan-3-one from Pterocarpus santalinoides L’Herit, ex Dc. Afr J Biotechnol. 2016; 15(14):531-538.

Zavala-Ocampo LM, Aguirre-Hernández E, PérezHernández N, Rivera G, Marchat LA, RamírezMoreno E. Antiamoebic activity of Petiveria alliacea leaves and their main component, Isoarborinol. J Microbiol Biotechnol. 2017; 27(8):1401-1408.

do Nascimento KF, Moreira FMF, Alencar Santos J, Kassuya CAL, Croda JHR, Cardoso CAL, Vieira MdC, Góis Ruiz ALT, Ann Foglio M, de Carvalho JE, Formagio ASN. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J Ethnopharmacol. 2018; 210:351-358.

Ziaei A, Ramezani M, Wright L, Paetz C, Schneider B, Amirghofran Z. Identification of spathulenol in Salvia mirzayanii and the immunomodulatory effects. Phytother Res. 2011; 25(4):557-562.

Yang S-H, Liao P-H, Pan Y-F, Chen S-L, Chou S-S, Chou M-Y. The novel p53-dependent metastatic and apoptotic pathway induced by vitexin in human oral cancer OC2 cells. Phytother Res. 2013; 27(8):1154- 1161.

Lee C-Y, Chien Y-S, Chiu T-H, Huang W-W, Lu C-C, Chiang J-H, Yang J-S. Apoptosis triggered by vitexin in U937 human leukemia cells via a mitochondrial signaling pathway. Oncol Rep. 2012; 28(5):1883-1888.