In Vitro Cytotoxic Activity of Constituents of the Aerial Parts of Glycosmis parviflora doi.org/10.26538/tjnpr/v4i10.8
Main Article Content
Abstract
Glycosmis parviflora (Sims) Little is used in Vietnamese ethnomedicine to treat several ailments. We investigated the aerial parts of G. parviflora and obtained three triterpenes, a sesquiterpene, and a flavonoid C-glycoside. The terpenes were friedelin, arborinol, isoarborinol, and spathulenol, and the glycoside was vitexin. The compounds were identified by one- and two-dimensional nuclear magnetic resonance spectroscopy and by comparison with previous reports. Spathulenol exhibited moderate cytotoxic activity against LU-1, MDA-MB-231, MKN7, HepG2, and HeLa human cancer cells with 50% inhibitory concentration (IC50) values ranging from 31.88 to 42.33 µg/mL. Therefore, G. parviflora and spathulenol might be useful for developing novel anticancer agents.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: Globocan of estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6):394-424.
WHO. Coronavirus Disease (COVID-19) Dashboard. Available from: https://covid19.who.int/ (accessed 2020/08/12).
Richards M, Anderson M, Carter P, Ebert BL, Mossialos E. The impact of the Covid-19 pandemic on cancer care. Nat Cancer. 2020; 1(6):565-567.
Ito C, Itoigawa M, Sato A, Hasan CM, Rashid MA, Tokuda H, Mukainaka T, Nishino H, Furukawa H. Chemical constituents of Glycosmis arborea: Three new carbazole alkaloids and their biological activity. J Nat Prod. 2004; 67(9):1488-1491.
Pacher T, Bacher M, Hofer O, Greger H. Stress induced carbazole phytoalexins in Glycosmis species. Phytochem. 2001; 58(1):129-135.
Yasir M, Tripathi MK, Singh P, Shrivastava R. The genus Glycosmis (Rutaceae): A comprehensive review on its phytochemical and and pharmacological perspectives. The Nat Prod J. 2019; 9(2):98-124.
Zhang D and Hartley TG. Glycosmis Corrêa. Ann. Mus. Natl. Hist. Nat. 6: 384. 1805, nom. cons. In: Wu ZY, Peter HR, Deyuan H. Flora of China. Eds. Missouri Botanical Garden Press; 2008. 11:80-83 p.
Ho PH. An Illustrated Flora of Vietnam [in Vietnamese] (2nd ed.). Tre Publishing House: Ho Chi Minh City, Viet Nam; 2003. 952 p.
Hofer O and Greger H. Sulfur-Containing Amides from Glycosmis Species (Rutaceae). In: Chang CWJ,Greger H, Hofer O, Herz W, Falk H, Kirby GW, Moore RE. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, Eds. Springer Vienna: Vienna; 2000. 187-223 p.
Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, VaigroWolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer I. 1991; 83(11):757-766.
Akihisa T, Yamamoto K, Tamura T, Kimura Y, Iida T, Nambara T, Chang FC. Triterpenoid Ketones from Lingnania chungii Moclure: Arborinone, Friedelin and Glutinone. Chem Pharm Bull (Tokyo). 1992; 40(3):789-791.
Farruque R, Chowdhury R, Sohrab MH, Hasan CM, Rashid MA. Triterpene constituents from the leaves of Melicope indica. Pharmazie. 2003; 58(7):518-520.
Gomes RA, Teles YCF, Pereira FdO, Rodrigues LAdS, Lima EdO, Agra MdF, Souza MdFVd. Phytoconstituents from Sidastrum micranthum (A. St. – Hil.) Fryxell (Malvaceae) and antimicrobial activity of pheophytin A. Braz J Pharm Sci. 2015; 51(4):861-867.
Goud TV, Reddy NS, Krishnaiah P, Venkateswarlu Y. Spathulenol: a rare sesquiterpene from soft coral Sinularia kavarattiensis. Biochem Syst Ecol. 2002; 30(5):493-495.
Cuong LCV, Trang DT, Cuc NT, Nhiem NX, Yen PH, Anh HLT, Huong LM, Minh CV, Kiem PV. Flavonoid glycosides from Antidesma ghaesembilla. Vietnam J Chem. 2015; 53(2e):94-97.
Pakrashi SC and Samanta TB. Acid induced empimerization and rearrangements of arborinol, the novel triterpene from Glycosmis arborea (ROXB.) DC. Tetrahedron Lett. 1967; 8(38):3679-3684.
Fan Q-F, Song Q-S, Zuo G-Y, Zheng J-Y, Na Z, Hu H-B. Chemical constituents of the twigs and leaves of Glycosmis montana. Chem Nat Compd. 2015; 51(3):550-551.
Ahmed R, Choudhury S, Vajczikova I, Leclercq PA. Essential oils of Glycosmis pentaphylla (Cor.). A new report from Assam, India. J Essent Oil Res. 2000; 12(4):471-474.
Guo S-S, Zhang W-J, Yang K, Liang J-Y, You C-X, Wang C-F, Li Y-P, Geng Z-F, Deng Z-W, Du S-S. Repellence of the main components from the essential oil of Glycosmis lucida Wall. ex Huang against two stored product insects. Nat Prod Res. 2017; 31(10):1201-1204.
Choo CY, Sulong NY, Man F, Wong TW. Vitexin and isovitexin from the leaves of Ficus deltoidea with invivo α-glucosidase inhibition. J Ethnopharmacol. 2012; 142(3):776-781.
Kim J, Lee I, Seo J, Jung M, Kim Y, Yim N, Bae K. Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3-L1 cells. Phytother Res. 2010; 24(10):1543-1548.
Kim JH, Lee BC, Kim JH, Sim GS, Lee DH, Lee KE, Yun YP, Pyo HB. The isolation and antioxidative effects of vitexin from Acer palmatum. Arch Pharm Res. 2005; 28(2):195-202.
Anjum A, Sultan MZ, Hasan CM, Rashid MA. Antibacterial and cytotoxic constituents from Bridelia verrucosa Haines growing in Bangladesh. Dhaka Univ J Pharm Sci. 2017; 16(1):61-68.
Odeh IC, Tor-Anyiin TA, Igoli JO, Anyam JV. In vitro antimicrobial properties of friedelan-3-one from Pterocarpus santalinoides L’Herit, ex Dc. Afr J Biotechnol. 2016; 15(14):531-538.
Zavala-Ocampo LM, Aguirre-Hernández E, PérezHernández N, Rivera G, Marchat LA, RamírezMoreno E. Antiamoebic activity of Petiveria alliacea leaves and their main component, Isoarborinol. J Microbiol Biotechnol. 2017; 27(8):1401-1408.
do Nascimento KF, Moreira FMF, Alencar Santos J, Kassuya CAL, Croda JHR, Cardoso CAL, Vieira MdC, Góis Ruiz ALT, Ann Foglio M, de Carvalho JE, Formagio ASN. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J Ethnopharmacol. 2018; 210:351-358.
Ziaei A, Ramezani M, Wright L, Paetz C, Schneider B, Amirghofran Z. Identification of spathulenol in Salvia mirzayanii and the immunomodulatory effects. Phytother Res. 2011; 25(4):557-562.
Yang S-H, Liao P-H, Pan Y-F, Chen S-L, Chou S-S, Chou M-Y. The novel p53-dependent metastatic and apoptotic pathway induced by vitexin in human oral cancer OC2 cells. Phytother Res. 2013; 27(8):1154- 1161.
Lee C-Y, Chien Y-S, Chiu T-H, Huang W-W, Lu C-C, Chiang J-H, Yang J-S. Apoptosis triggered by vitexin in U937 human leukemia cells via a mitochondrial signaling pathway. Oncol Rep. 2012; 28(5):1883-1888.