Present and Future Potential of Antiparasitic Activity of Opuntia ficus-indica doi.org/10.26538/tjnpr/v4i10.3

Main Article Content

Wafaa M. Hikal
Hussein A.H. Said-Al Ahl
Kirill G. Tkachenko

Abstract

The prickly pear, Opuntia ficus-indica of the Cactaceae family is important in agricultural
economies throughout arid and semi-arid regions. It has multiple uses in folk medicine of
different countries since ancient times. This makes it a promising multi-purpose plant for use as
food, therapy, and other purposes. Treatment with medicinal and aromatic plants and the use of
their biologically active products, especially as anti-parasites, has become a very important and
urgent matter due to the need for new anti-parasite drugs, as a result ofthe emergence of some
strains of parasites resistant to chemotherapy. The present review highlights the importance of
Opuntia ficus-indica as antiparasitic agentand the possibility of usingOpuntia ficus-indica as the
most valuable and promising plant in the pharmaceutical industry to treat diseases caused by
infection with parasites.
Keywords: Opuntia ficus indica, Antiparasites, Plant active components, Phytotherapy.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hikal, W. M., Said-Al Ahl, H. A., & Tkachenko, K. G. (2020). Present and Future Potential of Antiparasitic Activity of Opuntia ficus-indica: doi.org/10.26538/tjnpr/v4i10.3. Tropical Journal of Natural Product Research (TJNPR), 4(10), 672-679. https://tjnpr.org/index.php/home/article/view/1016
Section
Articles
Author Biography

Wafaa M. Hikal, Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia

Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki,Giza, Egypt

How to Cite

Hikal, W. M., Said-Al Ahl, H. A., & Tkachenko, K. G. (2020). Present and Future Potential of Antiparasitic Activity of Opuntia ficus-indica: doi.org/10.26538/tjnpr/v4i10.3. Tropical Journal of Natural Product Research (TJNPR), 4(10), 672-679. https://tjnpr.org/index.php/home/article/view/1016

References

Said-Al Ahl HAH, Astatkie T, Hikal W. Opuntia ficusindica (cactus pear) multipurpose plant for the future. Book, Noor Publishing; Noor Publishing, OmniScriptum GmbH & Co. KG Bahnhofstraße 28, 66111 Saarbrücken, Germany.2017.

Chauhan SP, Sheth NR, Jivani NP, Rathod IS, Shah PI. Biological actions of Opuntia species. System Rev Pharm. 2010;1(2):146-151.

Shetty AA, Rana MK, Preetham SP. Cactus: a medicinal food. J Food Sci Technol. 2012;49(5):530-536.

Nuñez-López MA, Paredes-López O, Reynoso-Camacho R. Functional and hypoglycemic properties of nopal cladodes (O. ficus-indica) at different maturity stages using in vitro and in vivo tests. J Agr Food Chem. 2013;61(46):10981- 10986.

Kaur M, Kaur A, Sharma R. Pharmalogical actions of Opuntia ficus-indica: A review. J App Pharm Sci. 2012;2(7):15-18.

Dvorkin-Camiel L, Whelan JS. Tropical American plants in the treatment of infectious disease. J Diet Suppl. 2008;5(4):349-372.

Albano C, Negro C, Tommasi N, Gerardi C, Mita G, Miceli A, De Bellis L, Blando F. Betalains, phenols and antioxidant capacity in cactus pear [Opuntia ficus-indica(L.) Mill.] fruits from Apulia (South Italy) genotypes. Antioxidants. 2015; 4:269-280.

Stintzing, FC, Schieber A, Carle R. Evaluation of colour properties and chemical quality parameters of cactus juices. Eur. Food Res. Technol. 2003; 216:303-311.

Castellar R, Obón J, Alacid M, Fernández-López JA. Color properties and stability of betacyanins from Opuntia fruits. J Agric Food Chem. 2003;51(9):2772-2776.

Tesoriere L, Allegra M, Butera D, Livrea MA. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: potential health effects of betalains in humans. Am J Clin Nutr. 2004;80(4):941-945.

Galati EM, Mondello MR, Giuffrida D, Dugo G, Miceli N, Pergolizzi S, Taviano MF. Chemical characterization and biological effects of Sicilian Opuntia ficus indica (L.) Mill. fruit juice: antioxidant and antiulcerogenic activity. J Agric Food Chem. 2003;51(17):4903-4908.

Emsley J. Nature’s Building Blocks: An A-Z Guide to the Elements, 2nd ed. Oxford, UK: Oxford University Press; 2011.

Magnesium: Fact Sheet for Health Professionals. National Institutes of Health Office of Dietary Supplements website. November 4, 2013. Available here. Accessed August 17, 2015.

FAO. Agro-industrial utilization of cactus pear. Rural Infrastructure and Agro-Industries Division (AGS), 168. Viale delle Terme di Caracalla, 00153 Rome. 2013.150 p.

Van Proeyen K, Ramaekers M, Pischel I, Hespel P. Opuntia ficus indica ingestion stimulates peripheral disposal of oral glucose before and after exercise in healthy men. Int J Sport Nutr. Exerc. Metab. 2012; 22:284-291

López-Romero P, Pichardo-Ontiveros E, Avila-Nava A, Vázquez-Manjarrez N, Tovar AR, Pedraza-Chaverri J, Torres N. The effect of nopal (Opuntia ficus indica) on postprandial blood glucose, incretins, and antioxidant activity in Mexican patients with type 2 diabetes after consumption of two different composition breakfasts. J Acad Nutr Diet. 2014;114(11):1811-1818.

Oh PS and Lim KT. Glycoprotein (90 kDa) isolated from Opuntia ficus indica var. saboten MAKINO lowers plasma lipid level through scavenging of intracellular radicals in Triton WR-1339-induced mice. Bio Pharm Bull. 2006; 29:1391-1396.

Perfumi M and Tacconi R. Effect of Opuntia ficus-indica flower infusion on urinary and electrolyte excretion in rats. Fitoterapia. 1996; 67:459-464.

Park EH, Kahng JH, Lee SH, Shin KH. An antiinflammatory principle from cactus. Fitoterapia. 2001; 72:288-290.

Wie MB. Protective effects of Opuntia ficus-indica and Saururus chinensis on free-radical induced neuronal injury n mouse cortical cell cultures. Yakhak Hoeji.2001; 44:613- 619.

Agozzino P, Avellone G, Caraulo L, Ferrugia M, Flizzola F. Volatile profile of sicilian prickly pear (Opuntia ficusindica) by SPME-GC/MS analysis. Italian J Food Sci. 2005;17:341-348.

El-Mostafa K, El Kharrassi Y, Badreddine A,Andreoletti P, Vamecq J, El Kebbaj MS, Latruffe N, Lizard G, Nasser B, Cherkaoui-Malki M. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for Nnutrition, health and disease. Molecules 2014; 19:14879-14901.

Azman NSN, Mahboob T, Tian-Chye T, Samudi C, Nissapatoran V, Wiart C. Plant-based Therapy - How does it Work on Parasites? Walailak J Sci Tech. 2018; 15(8):551- 559.

Santos C, Campestrini LH, Vieira DL, Pritsch I, Yamassaki FT, Zawadzki-Baggio SF, Maurer JBB, Molento MB. Chemical characterization of Opuntia ficus-indica (L.) Mill. hydroalcoholic extract and Its efficiency against gastrointestinal nematodes of sheep. Vet Sci. 2018; 5 (80):13.

Centers for Disease Control and Prevention (CDC): About Parasites, Available at: https://www.cdc.gov/parasites/about.html, accessed December 2016.

Viegi L, Pieroni A, Guarrera PM, Vangelisti R. A review of plants used in folk veterinary medicine in Italy as basis for a databank. J Ethnopharmacol. 2003; 89:221–244.

Féboli A, Laurentiz AC, Soares SCS, Augusto JG, Anjos LA, Magalhães LG, Filardi RS. Ovicidal and larvicidal activity of extracts of Opuntia ficus-indica against gastrointestinal nematodes of naturally infected sheep. Vet Parasitol. 2016; 226:65–68.

World Health Organization. Leishmaniasi; WHO Press: Geneva, Switzerland, 2020.

Ponte-Sucre A. Physiological consequences of drug resistance in Leishmania and their relevance for chemotherapy. Kinetoplastid Biol Dis. 2003; 28; 2(1):14.

Hikal WM and Said-Al Ahl HAH.Anti-leishmanial activity of Hyssopus officinalis: A Review. Int J Environ Plan Manag. 2017; 3(2):10-15.

Hikal WM and Said-Al Ahl HAH.Anti-cryptosporidium activity of essential oil: A review. Am J Food Sci Health 2017; 3(3):35-40.

Bargougui A, Champy P, TrikiS, Bories C, Le Pape P, LoiseauP.Antileishmanial activity of Opuntia ficus-indica fractions. Biomed Prev Nutr, 2014; 4 (2):101-104.

Belkhelfa-Sliman Ri and Djerdjouri B. Caffeic acid and quercetin exert caspases-independent apoptotic effects on Leishmania major promastigotes, and reactivate the death of infected phagocytes derived from BALB/c mice. Asian Pac J Trop Biomed 2017; 7(4):321–331.

Passero LF, Laurenti MD, Santos-Gomes G, Soares Campos BL, Sartorelli P, Lago JHG. Plants used in traditional medicine: extracts and secondary metabolites exhibiting antileishmanial activity. Curr Clin Pharmacol 2014; 9(3):187-204.

Radtke OA, Foo LY, Lu Y, Kiderlen AF, Kolodziej H. Evaluation of sage phenolics for their antileishmanial activity and modulatory effects on interleukin-6, interferon and tumour necrosis factoralpha-release in RAW 264.7 cells. Z Naturforsch C 2003; 58(5- 6):395-400.

Miranda MM, Panis C, da Silva SS, Macri JA, Kawakami NY, Hayashida TH, Madeira TB, AcquaroJr VR, Nixdorf SL, Pizzatti L, Ambrosio SR, Cecchini R, Arakawa NS, VerriJr WA, Pavanelli WR. Kaurenoic acid possesses leishmanicidal activity by triggering a NLRP12/IL- 1b/cNOS/NO pathway. Mediat Inflamm. 2015; 2015: 392918.

Isah MB, Ibrahim MA, Mohammed A, Aliyu AB, Masola B, Coetzer TH. A systematic review of pentacyclic triterpenes and their derivatives as chemotherapeutic agents against tropical parasitic diseases. Parasitol. 2016; 143(10):1219-231.

Galati EM, Tripodo MM, Trovato A, d’Aquino A, Monforte MT. Biological activity of Opuntia ficus indica cladodes II: Effect on experimental hypercholesterolemia in rats. Pharm Biol.2003; 41(3):175-179.

Bargougui A, Tag HM, Bouaziz M, Triki S. Antimicrobial, antioxidant, total phenols and flavonoids content of four cactus (Opuntia ficus-indica) cultivars. Biomed Pharmacol J. 2019; 12(3):1353-1368.

Junior JTC, de Morais SM, Gomez CV, Molas CC, Rolon M, Boligon AA, Athayde ML, de Morais Oliveira CD, Tintino SE, Coutinho HDM. Phenolic composition and antiparasitic activity of plants from the Brazilian Northeast ‘‘Cerrado”. Saudi J Biol Sci. 2016); 23:434-440.

Tasdemir D, Kaiser M, Brun R, Yardley V, Schmidt TJ, Tosun F, Rüedi P. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues. In vitro, In vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother. 2006; 50: 1352–1364.

Mittra B, Saha A, Chowdhury AR, Pal C, Mandal S, Mukhopadhyay S, Bandyopadhyay S & Majumder HK. Luteolin, an abundant dietary component is a potent antileishmanial agent that acts by inducing topoisomerase IImediated kinetoplast DNA cleavage leading to apoptosis.

Mol Med.2000; 6:527-541.

Mamani-Matsuda M, Rambert J, Malvy D, Lejoly-Boisseau H, Daulouede S, Thiolat D, Coves S, Courtois P, Vincendeau P & Mossalayi MD. Quercetin induces apoptosis of Trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages. Antimicrob Agents Chemother.2004; 48:924-929.

Stermitz FR, Scriven LN, Tegos G, Lewis K. Two flavonoids from Artemisia annua which potentiate the activity of berbine and norfloxacin against a resistant strain of Staphylococcus aureus. Planta Med. 2002; 68:1140- 1141.

Mead JR and McNair N. Antiparasitic activity of flavonoids and isoflavones against Cryptosporidium parvum and Encephalitozoon intestinalis. FEMS Microbiol Lett. 2006; 259:153–157.

Dobbin CA, Smith NC, Johnson AM. Heat shock protein 70 is a potential virulence factor in murine Toxoplasma infection via immunomodulation of host NF-kappa B and nitric oxide. J Immunol.2002; 169:958-965.

MacLaren A, Attias M, de Souza W. Aspects of the early moments of interaction between tachyzoites of Toxoplasma gondii with neutrophils. Vet Parasitol.2004; 125:301-312.

Forney JR, DeWald DB, Yang S, Speer CA, Healey MC. A role for host phosphoinositide 3-kinase and cytoskeletal remodeling during Cryptosporidium parvum infection. Infect Immun.1999; 67:844-852.

World Health Organization. World Malaria Report; WHO Press: Geneva, Switzerland, 2020.

Schwikkard S and van Heerden FR. Antimalarial activity of plant metabolites. Nat Prod Rep. 2002; 19:675-692.

Pan W, Xu X, Shi N, Tsang SW, Zhang H. Antimalarial activity of plant metabolites. Int J Mol Sci. 2018; 19:1382.

Bargougui A, Le Pape P, Triki S. Antiplasmodial efficacy of fruit extracts and cladodes of Opuntia ficus-indica. J Nat Sci Res. 2013; 3(6):31-37.

Kaur M, Kaur A, Sharma R. Pharmacological actions of Opuntia ficus indica: A review. J Appl Pharm Sci. 2012; 2(7):15-18.

Zou DM, Brewer M, Garcia F, Feugang J.M, Wang J, Zang R, Liu H, Zou C. Cactus pear: anatural product in cancer chemoprevention. Nutr J. 2005; 4:25-36.

Alimi H, Hfaeidh N, Bouoni Z, Sakly M, Ben Rhouma K. Ameliorative effect of Opuntia ficus indica juice on ethanol-induced oxidative stress in rat erythrocytes. Exp Toxicol Pathol. 2013; 65:391-396.

Alimi H, Hfaeidh N, Bouoni Z, Hfaiedh M, Sakly M, Zourgui L, Ben Rhouma K. Antioxidant and antiulcerogenic activities of Opuntia ficus indica f. inermis root extract in rats. Phytomed.2010; 17:1120–1126.

Butera D, Tesoriere L, Di Gaudio F, Bongiorno A, Allegra M, Pintaudi A.M. Antioxidant activities of Sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin. J Agric Food Chem. 2002; 50:6895-901.

Gengatharan A, Dykes GA, Choo WS. Betalains: natural plant pigments with potential application in functional foods. LWT Food Sci Technol.2015; 64:645–649.

Hilou A, Nacoulma OG, Guiguemde TR. In vivo antimalarial activities of extracts from Amaranthus spinosus L. and Boerhaavia erecta L. in mice. J Ethnopharmacol.2006; 103:236–240.

Lim SS, Kim HS, Lee DU. In vitro Antimalarial activity of flavonoids and chalcones. Bull Korean Chem Soc. 2007; 28(12):2495.

Rasoanaivo P, Wright CW, Willcox ML, Gilbert B. Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J. 2011; 10(1):S4.

Ntie-Kang F, Onguéné PA, Lifongo LL, Luc MM. The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids. Malar J. 2014; 13(1):81.

Nijveldt RJ, Nood EV, Hoorn DEV, Boelens PG, Norren KV, Leeuwen PAV. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001; 74(4):418-425.

Almedida RB, Pereira AC, Cortes SF, Lemos VS. Vascular effects of flavonoids. Curr Med Chem. 2011; 16:107-118.

Thebtaranonth C, Thebtaranonth Y, Wanauppathamkul S, Yuthavong Y. Antimalarial sesquiterpenes from tubers of Cyperus rotundus: structure of 10,12-peroxycalamenene, a sesquiterpene endoperoxide. Phytochem. 1995;40:125-128.

Kaushik NK, Bagavan A, Rahuman AA, Mohanakrishnan D, Kamaraj C, Elango G, Zahir A, Sahal D. Antiplasmodial potential of selected medicinal plants from eastern Ghats of South India. Exp Parasitol.2013; 134:26-32.

Silva NC, da Gonçalves SF, Araújo LS, de Kasper AAM, Fonseca AL, da Sartoratto A, Castro KCF, Moraes TMP, Baratto LC, Varotti FD, Barata LES, Moraes WP. In vitro and in vivo antimalarial activity of the volatile oil of Cyperus articulatus (Cyperaceae). Acta Amazon. 2019; 49:334-342.

Weenen H, Nkunya MHH, Bray DH, Mwasumbi LB, Kinabo LS, Kilimali VAEB, Wijnberg JBPA. Antimalarial compounds containing an α,β-unsaturated carbonyl moiety from Tanzanian medicinal plants. Planta Med. 1990; 56:371-373.

El Mannoubi I, Barrek S, Skanji T, Casabianca H, Zarrouk H. Characterization of Opuntia fcus indica seed oil from Tunisia. Chem Nat Comp.2009; 45(5):616–620.

Ogbe RJ, Ochalefu DO, Mafulul SG, Olaniru OB. A review on dietary phytosterols: their occurrence, metabolism and health benefits. Asian J Plant Sci Res. 2015; 5(4):10-21.

Doğan A, Otlu S, Çelebi O, Killicle PA, Saglam AG, Dogan ANC, Mutlu N. An investigation of antibacterial effects of steroids,” Turk J Vet Anim Sci. 2017; 41(2):302– 305.

Khémiri I, Hédi BE, Zouaoui NS, Ben Gdara N, Bitri L. The Aantimicrobial and wound healing potential of Opuntia ficus indica L. inermis extracted oil from Tunisia. EvidBased Compl Altern Med. 2019; 2019, Article ID 9148782, 10 pages.

Dilika F, Bremner PD, Meyer JJM. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: a plant used during circumcision rites. Fitoterapia. 2000; 71(4):450-452.

Park BK, Kim YR, Kim YH, Yang C, Seo C, Jung IC, Jang I, Kim S, Lee MY. Antidepressant-like effects of gyejibokryeong-hwan in a mouse model of reserpineinduced depression. Biomed Res Int. 2018; 2018(59).

Özcan MM, Fahad Y, Al Juhaimi Y. Nutritive value and chemical composition of prickly pear seeds (Opuntia ficus indica L.) growing in Turkey, Int J Food Sci Nutr. 2011; 62(5):533-536.

Wright CR and Setzer WN. Chemical composition of volatiles from Opuntia littoralis,Opuntia ficus-indica, and Opuntia prolifera growing on Catalina Island, California. Nat Prod Res. 2014; 28(3):208-211.

Zito P, Sajeva M, Bruno M, Rosselli S, Maggio A, Senatore F. Essential oils composition of two Sicilian cultivars of Opuntia ficus-indica (L.) Mill. (Cactaceae) fruits (prickly pear). Nat Prod Res. 2013; 27 (14):1305- 1314.

Roeber F, Jex AR, Gasser RB. Impact of gastrointestinal parasitic nematodes of sheep, andthe role of advanced molecular tools for exploring epidemiology and drug resistance - an Australian perspective. Parasit Vectors. 2013; 6:153.

Kaplan RM. Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol. 2004; 20 (10):477-481.

Wolstenholme AJ, Fairweather I, Prichard RK, von Samson-Himmelstjerna G, Sangster NC. Drug resistance in veterinary helminths. Trends Parasitol. 2004; 20(10):469– 476.

Naczk M and Shahidi F. Extraction and analysis of phenolics in food. J Chromatogr. A 2004; 1054:95-111.

Russo M, Spagnuolo C, Tedesco I, Bilotto, S, Russo GL. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem Pharmacol. 2012; 83:6-15.

Martínez-Ortíz-De-Montellano C, Vargas-Magaña JJ, Canul-Ku HL, Miranda-Soberanis R, Capetillo-Leal C, Sandoval-Castro CA, Hoste H, Torres-Acosta JFJ. Effect of a tropical tannin-rich plant Lysiloma latisiliquum on adult populations of Haemonchus contortus in sheep. Vet Parasitol. 2010; 172:283-290.

Russo GL, Russo M, Spagnuolo C. The pleiotropic flavonoid quercetin: From its metabolism to the inhibition of protein kinases in chronic ymphocytic leukemia. Food Funct. 2014; 5:2393-2401.

Hoste H, Martinez-Ortiz-de-Montellano C, Manolaraki F, Brunet S, Ojeda-Robertos N, Fourquaux, I, Torres-Acosta, JFF, Sandoval-Castro, CA. (2012). Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections. Vet Parasitol. 2012;

:18-27.

Akkari H, Rtibi K, B’chir F, Rekik M, Darghouth MA, Gharbi M. In vitro evidence that the pastoral Artemisia campestris species exerts an anthelmintic effect on Haemonchus contortus from sheep. Vet Res Commun. 2014; 38:249–255.

Klongsiriwet C, Quijada J, Williams AR, Mueller-Harvey I, Williamson EM, Hoste H. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int J Parasitol Drugs Drug Resist. 2015; 5:127-134.

Williams AR, Fryganas C, Ramsay A, Mueller-Harvey I, Thamsborg SM. Direct anthelmintic effects of condensed tannins from diverse plant sSources against Ascaris suum. PLoS ONE. 2014; 9(5):e97053.

Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999; 12:564-582.

Ishida K, de Mello JCP, Cortez DAG, Filho BPD, UedaNakamura T, Nakamura CV. Influence of tannins from Stryphnodendron adstringens on growth and virulence factors of Candida albicans. J Antimicrob. Chemother. 2006; 58:942-949.

Kubata BK, Nagamune K, Murakami N, Merkel P, Kabututu Z, Martin SK, Kalulu TM, Huq M, Yoshida M, Ohnishi-Kameyama M, Kinoshita T, Duszenko M, Urade Y.Kola acuminata proanthocyanidins: a class of antitrypanosomal compounds effective against Trypanosoma brucei. Int J Parasitol. 2005; 35:91-103.

Kiderlen AHF. Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells. Phytochem. 2005; 66:2056-2071.

Hoste H, Martinez-Ortiz-De-Montellano C, Manolaraki F, Brunet S, Ojeda-Robertos N, Fourquaux I, Torres-Acosta JFJ, Sandoval-Castro CA. Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections. Vet Parasitol.2012; 186:18-27.

Butter NL, Dawson JM, Wakelin D, Buttery PJ. Effect of dietary condensed tannins on gastrointestinal nematodes. J Agric Sci. 2011; 137:461-469.

Costa CTC, Bevilaqua CML, Morais SM, CamurcaVasconcelos ALF, Maciel MV, Braga RR, Oliveira LMB. Anthelmintic activity of Cocos nucifera L. on intestinal nematodes of mice. Res Vet Sci.2010; 88:101-103.

Fakae BB, Campbell AM, Barrett J, Scott IM, TeesdaleSpittle PH, Liebau E. Inhibition of glutathione Stransferases (GSTs) from parasitic nematodes by extracts from traditional Nigerian medicinal plants. Phytother Res.2000; 14:630-634.

Nalule AS, Mbaria JM, Kimenju JW. In vitro anthelmintic potential and phytochemical composition of ethanolic and water crude extracts of Euphorbia heterophylla Linn. J Med Plant Res. 2013; 7:3202-3210.

Brunet S, Jackson F, Hoste H. Effects of sainfoin (Onobrychis viciifolia) extract and monomers of condensed tannins on the association of abomasal nematode larvae with fundic explants. Int J Parasitol. 2008; 38:783-790.

Rogers WP and Brooks F. The mechanism of hatching of eggs of Haemonchus contortus. Int J Parasitol. 1977; 7(1):61-65.

Thompson DP and Geary TG. The Structure and function of helminth surfaces. Biochem Mol Biol Parasitol. 1995; 6:203.

Hoste H, Jackson F, Athanasiadou S, Thamsborg SM, Hoskin SO , authors. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol. 2006; 22(6):253-261.

Iqbal Z, Nadeem QK, Khan MN, Akhtar MS, Waraich FN. In vitro anthelmintic activity of Allium sativum, Zingiber officinale, Curcurbita mexicana and Ficus religiosa. Int J Agric Biol. 2001; 3(4):454-457.

Piga A. Cactus pear: A fruits of nutaceutical and functional importance. J Prof Assoc Cactus Dev2004; 6:9-22.

Stintzing FC, Schieber A, Carle R. Phytochemical and nutritional significance of cactus pear. Eur Food Res Technol. 2001; 212(4):396-407.

Tesoriere L, Fazzari M, Allegra M, Livrea MA. Biothiols, taurine, and lipidsoluble antioxidants in the edible pulp of Sicilian cactus pear (Opuntia ficus-indica) fruits and changes of bioactive juice components upon industrial processing. J. Agric. and Food Chem. 2005; 53:7851-7855.

Zrira SGL, Petretto B, Saidi M, Salaris G, Pintore G. Volatile constituents and polyphenol composition of Opuntia ficusi ndica (L.) Mill from Morocco. Revue Marocaine des Sci. Agononomiques et Vétérinaires. 2016; 4:5-11.

Khatabi O, Hanine H, Elothmani D, Hasib A. Extraction and determination of polyphenols and betalain pigments in the Moroccan prickly fruits (Opuntia ficus indica). Arab J Chem. 2011; 9:S278–S281.

Kuti JO. Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem. 2004; 85(4):527-533.

Castellanos-Santiago E and Yahia EM. Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization massspectrometry. J Agric Food Chem. 2008; 56:5758-5764.

Anwar MM and Sallam EM. Utilization of prickly pear peels to improve quality of pan bread. Arab J Nucl Sci Appl. 2016; 49:151-163.

Milán-Noris AK, Chavez-Santoscoy RA, Olmos-Nakamura A, Gutiérrez-Uribe JA, Serna-Saldívar SO. An extract from prickly pear peel (Opuntia ficus-indica) affects cholesterol excretion and hepatic cholesterol levels in hamsters fed hyperlipidemic diets. Curr Bioactiv Comp. 2016; 12:1-7.

Ganapati KK, Sujith S, Preethy J, Manakkulaparambil NP, Thankachy STDS, Thachappully AUP, Surya S, Villan LG. Anthelmintic activity of fruit extract and fractions of Piper longum L. In vitro. Pharmacogn J. 2018; 10(2):33-40.

Hernandez-Villegas MM, Borges-Argaez R, RodriguezVivas RI, Torres-Acosta JF, Méndez-Gonzalez M, CaceresFarfan M. Ovicidal and larvicidal activity of the crude extracts from Phytolacca icosandra against Haemonchus contortus. Vet. Parasitol. 2011; 179(1):100-106.

Enwerem NM, Okogun JI, Wambebe CO, Okorie DA, Akah PA , authors. Anthelmintic activity of the stem bark extracts of Berlina grandiflora and one of its active principles, Betulinic acid. Phytomedicine. 2001; 8(2):112- 114.